纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | GDF8 |
Uniprot No | O14793 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-375aa |
氨基酸序列 | MQKLQLCVYIYLFMLIVAGPVDLNENSEQKENVEKEGLCNACTWRQNTKSSRIEAIKIQILSKLRLETAPNISKDVIRQLLPKAPPLRELIDQYDVQRDDSSDGSLEDDDYHATTETIITMPTESDFLMQVDGKPKCCFFKFSSKIQYNKVVKAQLWIYLRPVETPTTVFVQILRLIKPMKDGTRYTGIRSLKLDMNPGTGIWQSIDVKTVLQNWLKQPESNLGIEIKALDENGHDLAVTFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQIIYGKIPAMVVDRCGCS |
分子量 | 69.2 kDa |
蛋白标签 | GST-tag at N-terminal |
缓冲液 | 0 |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4篇关于重组人GDF8蛋白的参考文献示例(文献名称与内容为虚构示例,仅作参考):
1. **《Efficient Expression and Purification of Recombinant Human GDF8 in Escherichia coli》**
- **作者**: Zhang Y. et al.
- **摘要**: 报道了通过大肠杆菌表达系统高效制备重组人GDF8蛋白的方法,并验证其通过抑制肌细胞增殖的生物学活性。
2. **《Structural Insights into Human GDF8 Reveal Binding Mechanisms with ActRIIB Receptor》**
- **作者**: Smith J.T. et al.
- **摘要**: 通过X射线晶体学解析重组人GDF8蛋白的三维结构,揭示其与ActRIIB受体结合的分子机制,为靶向药物设计提供依据。
3. **《Recombinant Human GDF8 Induces Muscle Atrophy in Murine Models》**
- **作者**: Lee S. et al.
- **摘要**: 在动物模型中验证重组人GDF8的功能,发现其过表达显著抑制骨骼肌生长并诱导肌肉萎缩,支持GDF8作为肌肉代谢调控因子的作用。
4. **《Neutralizing Antibody Development Against GDF8 Using Recombinant Protein Immunization》**
- **作者**: Brown K. et al.
- **摘要**: 利用重组人GDF8蛋白免疫小鼠,成功筛选出可阻断其与受体结合的中和抗体,为肌肉疾病的治疗提供潜在策略。
(注:以上为模拟示例,实际文献需通过PubMed/Google Scholar等平台检索关键词“recombinant human GDF8”或“myostatin protein”获取。)
Growth Differentiation Factor 8 (GDF8), or myostatin, is a secreted protein within the TGF-β superfamily, encoded by the MSTN gene. Predominantly produced in skeletal muscle, it acts as a potent negative regulator of muscle growth by inhibiting myoblast proliferation and differentiation. Genetic studies in animals show that GDF8 mutations lead to significant muscle hypertrophy, establishing its role in maintaining muscle homeostasis. Mature GDF8 is derived from proteolytic processing of a precursor protein and signals through activin type IIB (ACVR2B) receptors, activating Smad2/3 pathways to suppress muscle development.
Recombinant human GDF8 is engineered using bacterial (e.g., *E. coli*) or mammalian expression systems, enabling large-scale production for research and therapeutic exploration. This protein is instrumental in studying muscle-wasting diseases (e.g., muscular dystrophy, cachexia), metabolic syndromes, and aging-related muscle loss. Its inhibition via neutralizing antibodies, gene-editing technologies (e.g., CRISPR), or ligand traps represents a promising therapeutic strategy for enhancing muscle mass and treating obesity. However, clinical applications require caution due to potential systemic impacts. Beyond therapeutics, recombinant GDF8 aids in elucidating TGF-β signaling mechanisms and cross-talk with metabolic pathways, underscoring its dual role in muscle biology and systemic metabolism. These insights position GDF8 as a critical target in both biomedical research and drug development. (249 words)
×