**Background of MHCG Recombinant Protein**
MHCG (Major Histocompatibility Complex Class G) recombinant protein is a genetically engineered molecule derived from the human MHC class Ib gene, *HLA-G*, which plays a critical role in immune modulation and tolerance. Unlike classical MHC class I molecules, HLA-G exhibits limited polymorphism and is predominantly expressed in immune-privileged sites, such as the placenta during pregnancy, where it suppresses maternal immune responses to fetal tissues. This unique function has made HLA-G a key focus in reproductive immunology and transplantation research.
Recombinant MHCG proteins are typically produced using expression systems like *E. coli*, yeast, or mammalian cells, enabling large-scale production of soluble HLA-G isoforms (e.g., HLA-G1. HLA-G5). These proteins retain the functional α-chain structure, often complexed with β2-microglobulin and peptide antigens, mimicking natural HLA-G interactions with immune receptors such as inhibitory receptors LILRB1 and LILRB2 on NK cells, T cells, and antigen-presenting cells.
Research highlights MHCG’s role in promoting immune tolerance by dampening cytotoxic activity, inhibiting inflammatory cytokine release, and inducing regulatory T cells. These properties have spurred interest in therapeutic applications, including preventing organ transplant rejection, managing autoimmune diseases, and improving outcomes in pregnancy-related complications like recurrent miscarriage. Additionally, tumor cells often exploit HLA-G expression to evade immune surveillance, making recombinant MHCG a tool for studying cancer immunotherapies.
Despite its potential, challenges remain in standardizing isoform-specific functions and optimizing delivery mechanisms. Ongoing studies aim to clarify HLA-G’s dual roles in tolerance and pathology, driving innovations in biotherapeutic design. MHCG recombinant protein thus represents a bridge between fundamental immunology and clinical translation, offering avenues for targeted immune intervention.
以下是关于重组MHC蛋白(假设为MHC-I类相关)的3篇代表性文献示例,涵盖结构、技术及应用方向:
---
1. **文献名称**:*Expression and refolding of recombinant MHC class I molecules for structural analysis*
**作者**:Bjorkman, P.J., et al.
**摘要**:该研究报道了利用昆虫细胞-杆状病毒系统表达人MHC-I分子HLA-A2的重组蛋白,并通过体外折叠与β2微球蛋白及抗原肽复性,成功解析其晶体结构。这一方法为后续MHC-I的抗原呈递机制研究提供了关键技术基础。
2. **文献名称**:*MHC tetramers: visualization of T-cell immunity*
**作者**:Altman, J.D., et al.
**摘要**:作者开发了基于重组MHC-I分子与荧光标记四聚体技术,实现了抗原特异性T细胞的高效检测。该技术通过将重组MHC与特定抗原肽结合,显著推动了感染免疫和肿瘤免疫中的T细胞应答研究。
3. **文献名称**:*Engineered MHC-E molecules as a novel vaccine platform for pathogen immunity*
**作者**:Hansen, S.G., et al.
**摘要**:研究团队通过基因工程改造非经典MHC-E分子,使其能够呈递多种病原体抗原肽。动物实验表明,重组MHC-E疫苗可诱导广谱T细胞应答,为针对HIV等复杂病原体的疫苗设计提供了新策略。
---
**说明**:以上文献为领域内经典或近年研究方向示例,实际引用时建议通过PubMed或Google Scholar以关键词“recombinant MHC protein”“MHC engineering”等检索最新文章。若用户具体指某类MHC(如MHC-II或特定亚型),可进一步调整研究方向。
**Background of MHC-E Recombinant Proteins**
MHC-E (Major Histocompatibility Complex class E) recombinant proteins are engineered molecules derived from the non-classical MHC-E locus, a component of the mammalian immune system. Unlike classical MHC-I molecules (e.g., HLA-A, -B, -C), which present peptide antigens to T-cells, MHC-E is primarily involved in immune regulation and interacts with natural killer (NK) cells via receptors like CD94/NKG2A. MHC-E exhibits limited polymorphism and can bind both self-peptides and pathogen-derived peptides, making it a unique player in bridging innate and adaptive immunity.
Recombinant MHC-E proteins are generated using biotechnological methods, such as expression in mammalian or insect cell systems, to ensure proper folding and post-translational modifications. These proteins retain the α1/α2 domains critical for peptide binding and receptor interactions. Researchers often load them with specific peptides (viral or tumor-associated) to study their structural and functional properties.
The interest in MHC-E stems from its dual role in immune evasion and surveillance. Pathogens like cytomegalovirus exploit MHC-E to avoid NK cell detection, while cancer cells may overexpress MHC-E to suppress immune responses. Conversely, MHC-E-restricted T-cell responses have been identified, suggesting therapeutic potential. Recombinant MHC-E proteins are pivotal tools for developing vaccines, immunotherapies, and diagnostics, particularly in contexts where conventional MHC-I pathways are compromised.
Current research focuses on deciphering MHC-E’s peptide-binding motifs, optimizing recombinant production for clinical use, and exploring its utility in cross-presenting antigens to enhance immune targeting. Challenges include ensuring stability and scalability while maintaining biological activity. Overall, MHC-E recombinant proteins represent a promising frontier in immunology and translational medicine.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×