首页 / 产品 / 蛋白 / 信号通路蛋白

Recombinant Human GbL protein

  • 中文名: G蛋白β亚基样蛋白(GbL)重组蛋白
  • 别    名: GbL;GBL;LST8;Target of rapamycin complex subunit LST8
货号: PA1000-7852
Price: ¥询价
数量:
大包装询价

产品详情

The GNg8 recombinant protein is a engineered biomolecule designed for applications in biomedical research, therapeutic development, and diagnostic tools. Derived from genetic recombination technology, it typically involves the fusion or modification of native protein domains to enhance stability, solubility, or functional specificity. The "GNg8" designation suggests a unique construct identifier, potentially linked to its target antigen or structural configuration. Such recombinant proteins are commonly produced in heterologous expression systems like *E. coli* or mammalian cell cultures, enabling scalable purification through affinity tags (e.g., His-tag, GST-tag).

This protein class often serves as a critical reagent in vaccine development, particularly for viral pathogens. For instance, GNg8 may mimic antigenic epitopes from infectious agents (e.g., SARS-CoV-2 spike protein domains) to stimulate immune responses or detect neutralizing antibodies. Its design might incorporate mutations to optimize receptor-binding affinity or evade immune recognition, balancing immunogenicity and safety. In therapeutic contexts, recombinant proteins like GNg8 are explored for targeted drug delivery, immunotherapy (e.g., checkpoint inhibitors), or as biosensors in diagnostic assays.

The development of GNg8 aligns with advances in structural biology and computational modeling, allowing precision engineering of functional domains. Quality control metrics emphasize >95% purity and validated bioactivity through ELISA, SPR, or cell-based assays. As a research tool, it facilitates mechanistic studies of protein-protein interactions and pathogen-host dynamics. Ongoing studies may focus on its stability under physiological conditions, batch-to-batch consistency, and preclinical efficacy in animal models. Such recombinant proteins represent a cornerstone of modern biologics, accelerating translational research in infectious diseases, oncology, and autoimmune disorders.

参考文献

以下是3篇关于GbL(G蛋白βγ亚基)重组蛋白的模拟参考文献示例(注:文献为虚构示例,仅供格式参考):

1. **《重组Gβγ蛋白的表达与功能表征》**

*作者:Smith A, et al.*

摘要:研究通过大肠杆菌系统重组表达Gβγ蛋白,优化纯化条件并验证其与Gα亚基的结合活性,证实其在信号转导中的调控作用。

2. **《Gβγ重组复合物的晶体结构解析》**

*作者:Li X, et al.*

摘要:利用昆虫细胞表达系统获得高纯度GbL重组蛋白,通过X射线衍射解析其三维结构,揭示Gβγ与膜受体相互作用的关键位点。

3. **《GbL重组蛋白在药物筛选中的应用》**

*作者:Wang Y, et al.*

摘要:开发基于GbL重组蛋白的高通量筛选平台,用于发现靶向G蛋白信号通路的小分子抑制剂,为心血管疾病治疗提供新策略。

**提示**:实际研究中建议通过PubMed或Google Scholar检索关键词“Gβγ subunit recombinant”或“GbL protein expression”获取真实文献。注意确认目标蛋白全称及研究领域(如结构生物学、药理学等)。

背景信息

**Background of GbL Recombinant Protein**

The GbL recombinant protein is a engineered biomolecule derived from the fusion or modification of specific functional domains, often associated with signaling pathways or cellular regulation. The term "GbL" may refer to distinct protein constructs depending on the research context, but it is commonly linked to proteins involved in immune modulation, receptor interactions, or enzymatic activity. For instance, in some studies, GbL proteins are designed to mimic or inhibit natural ligands, enabling precise manipulation of biological processes such as inflammation, apoptosis, or cell proliferation.

Recombinant protein technology allows GbL to be produced in heterologous systems (e.g., *E. coli*, yeast, or mammalian cells*), ensuring scalability and purity. Its design often incorporates tags (e.g., His-tag, FLAG) for simplified purification and detection. Structural features, such as disulfide bonds or glycosylation sites, may be optimized to enhance stability and bioactivity.

GbL proteins have gained attention in therapeutic development, particularly in targeting diseases like cancer, autoimmune disorders, or infectious diseases. For example, engineered GbL variants may block pathogenic protein-protein interactions or enhance immune cell activation. Additionally, they serve as critical tools in basic research to dissect molecular mechanisms, validate drug targets, or study protein function *in vitro* or *in vivo*.

Recent advances in protein engineering, including CRISPR-based editing and computational modeling, have further refined GbL constructs for higher specificity and reduced immunogenicity. Challenges remain in balancing efficacy with safety, but ongoing studies continue to expand their biomedical applications, positioning GbL recombinant proteins as versatile agents in both research and clinical settings.

(Word count: 250)

相关服务

折叠内容

重组蛋白表达纯化服务

在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。

展开

技术平台

艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。

展开

蛋白工艺开发

艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。

展开

客户数据及评论

折叠内容

大包装询价

×