纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | CNX |
Uniprot No | P27824 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 21-481aa |
氨基酸序列 | HDGHDDDVIDIEDDLDDVIEEVEDSKPDTTAPPSSPKVTYKAPVPTGEVY FADSFDRGTLSGWILSKAKKDDTDDEIAKYDGKWEVEEMKESKLPGDKGL VLMSRAKHHAISAKLNKPFLFDTKPLIVQYEVNFQNGIECGGAYVKLLSK TPELNLDQFHDKTPYTIMFGPDKCGEDYKLHFIFRHKNPKTGIYEEKHAK RPDADLKTYFTDKKTHLYTLILNPDNSFEILVDQSVVNSGNLLNDMTPPV NPSREIEDPEDRKPEDWDERPKIPDPEAVKPDDWDEDAPAKIPDEEATKP EGWLDDEPEYVPDPDAEKPEDWDEDMDGEWEAPQIANPRCESAPGCGVWQ RPVIDNPNYKGKWKPPMIDNPSYQGIWKPRKIPNPDFFEDLEPFRMTPFS AIGLELWSMTSDIFFDNFIICADRRIVDDWANDGWGLKKAADGAAEPGVV GQMIEAAEERPVDHHHHHH |
预测分子量 | 54 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于CNX(Calnexin)重组蛋白的参考文献示例,这些文献为模拟示例,实际文献请通过学术数据库进一步检索:
---
1. **文献名称**:Calnexin co-expression enhances the production of recombinant human glycoproteins in mammalian cell systems
**作者**:Helenius, A., et al.
**摘要**:本研究探讨了在哺乳动物细胞中共同表达Calnexin对重组人类糖蛋白产量的影响。实验表明,Calnexin显著提高了目标蛋白的折叠效率和分泌水平,为重组糖蛋白的规模化生产提供了优化策略。
2. **文献名称**:Purification and functional characterization of recombinant Calnexin for in vitro protein folding studies
**作者**:Zhang, Y., et al.
**摘要**:该研究开发了一种高效纯化重组Calnexin的方法,并验证其在体外协助未折叠蛋白折叠的功能。结果显示,重组Calnexin能有效结合底物蛋白,促进正确构象的形成,为体外折叠研究提供了工具。
3. **文献名称**:Structural insights into the chaperone activity of Calnexin through recombinant protein expression
**作者**:Johnson, R., & Smith, T.
**摘要**:通过重组Calnexin的结构与功能分析,揭示了其特定结构域对未折叠蛋白识别的关键作用,为优化重组蛋白表达系统中分子伴侣的应用提供了理论支持。
4. **文献名称**:Engineering Escherichia coli for co-expression of Calnexin to improve membrane protein solubility
**作者**:Lee, H., et al.
**摘要**:研究报道了在大肠杆菌中共同表达Calnexin以提高膜蛋白溶解性的策略,结果显示其减少了包涵体形成,为原核系统表达复杂蛋白提供了新思路。
---
**注意**:以上文献为示例性质,实际研究需查阅PubMed、Web of Science等数据库获取准确信息。建议结合关键词“Calnexin recombinant protein”、“chaperone activity”、“protein folding”等进行检索。
Calnexin (CNX), an endoplasmic reticulum (ER)-resident chaperone protein, plays a critical role in glycoprotein quality control by assisting in the folding and assembly of newly synthesized proteins. It selectively binds to monoglycosylated N-linked glycans via its lectin domain, retaining misfolded proteins in the ER for further attempts at proper folding or targeting them for degradation via the ER-associated degradation (ERAD) pathway. This function is essential for maintaining cellular proteostasis and ensuring the secretion of correctly folded proteins.
In recombinant protein production, CNX has gained attention for optimizing the yield and quality of therapeutic glycoproteins, such as monoclonal antibodies and viral envelope proteins. Overexpression of CNX in mammalian expression systems (e.g., CHO cells) has been shown to enhance proper protein folding, reduce aggregation, and improve secretion efficiency. This is particularly valuable for complex proteins requiring post-translational modifications, where improper folding can compromise biological activity or trigger immune responses.
CNX-engineered cell lines are increasingly used in biopharmaceutical manufacturing to address challenges in producing high-value biologics, including vaccines and enzyme replacement therapies. Recent studies also explore CNX's role in modulating ER stress responses, which could improve cell viability during large-scale bioreactor processes. Additionally, recombinant CNX itself is produced as a research tool to study protein-misfolding diseases, viral entry mechanisms (e.g., SARS-CoV-2 spike protein maturation), and cancer biology involving ER stress pathways. Advances in CRISPR-mediated gene editing and glycoengineering have further refined CNX-based platforms to meet stringent regulatory requirements for therapeutic protein production.
×