**Background of ACADM Recombinant Protein**
ACADM (acyl-CoA dehydrogenase medium chain) is a mitochondrial enzyme critical in fatty acid β-oxidation, catalyzing the dehydrogenation of medium-chain acyl-CoA derivatives to generate energy. Mutations in the *ACADM* gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD), an autosomal recessive disorder characterized by impaired fatty acid metabolism, leading to hypoglycemia, liver dysfunction, and life-threatening metabolic crises if untreated.
Recombinant ACADM protein is produced via genetic engineering, typically using expression systems like *E. coli*, yeast, or mammalian cells. Its production enables detailed study of ACADM’s structure, function, and interaction with substrates or inhibitors. Researchers employ it to model MCADD pathogenesis, screen potential therapeutics, and develop enzyme replacement strategies.
The recombinant protein retains enzymatic activity when purified, allowing kinetic assays to assess mutations’ effects on catalytic efficiency. It also aids in generating antibodies for diagnostic kits and validating gene therapy outcomes. Furthermore, structural studies using recombinant ACADM provide insights into mutation-induced conformational changes, guiding drug design.
Advances in recombinant technology, such as codon optimization and fusion tags, enhance protein yield and stability. ACADM recombinant tools are pivotal in bridging biochemical research with clinical applications, offering hope for improved diagnostics, neonatal screening, and targeted therapies for MCADD.
以下是关于ACADS(短链酰基辅酶A脱氢酶)重组蛋白的3篇代表性文献示例:
1. **文献名称**:*Expression and purification of recombinant human short-chain acyl-CoA dehydrogenase (ACADS) in Escherichia coli*
**作者**:Zhang Y et al.
**摘要**:本研究成功构建了人源ACADS基因的原核表达系统,利用大肠杆菌BL21菌株高效表达可溶性重组蛋白,并通过亲和层析纯化获得高纯度ACADS。酶活性测定显示重组蛋白具有催化短链脂肪酸氧化的功能。
2. **文献名称**:*Structural insights into ACADS mutations associated with mitochondrial disorders*
**作者**:Smith RJ et al.
**摘要**:通过X射线晶体学解析了重组ACADS蛋白及其常见致病突变体(如p.Gly209Ser)的三维结构,揭示了突变导致酶活性降低的分子机制,为相关代谢疾病的诊断与治疗提供理论依据。
3. **文献名称**:*Functional characterization of ACADS variants using a mammalian cell expression system*
**作者**:Lee H et al.
**摘要**:在HEK293细胞中表达野生型及突变型ACADS重组蛋白,结合质谱分析发现特定突变(如p.Arg107Trp)显著影响底物结合能力,导致细胞内短链酰基肉碱异常累积,验证了其与脂肪酸氧化障碍的关联性。
注:以上文献信息为示例性内容,实际引用需查询具体数据库(如PubMed)获取真实文献。
ACADS (acyl-CoA dehydrogenase short-chain), also known as SCAD, is a mitochondrial enzyme critical in fatty acid β-oxidation. It catalyzes the initial step of dehydrogenation for short-chain acyl-CoA substrates (C4-C6), converting them to trans-2-enoyl-CoA while transferring electrons to the electron transfer flavoprotein (ETF). This process is essential for energy production, particularly during fasting or prolonged exercise when fatty acids become a primary energy source. The ACADS gene is located on chromosome 12 (12q22) and encodes a 412-amino-acid protein that forms a homotetrameric structure.
Recombinant ACADS proteins are engineered using expression systems like E. coli or mammalian cells to study enzyme function, structure, and mutations. These proteins enable detailed biochemical characterization, including substrate specificity and kinetic parameters. Over 60 pathogenic variants in ACADS have been linked to SCAD deficiency, an autosomal recessive disorder characterized by impaired fatty acid oxidation. Symptoms range from asymptomatic metabolic markers (ethylmalonic aciduria) to severe neuromuscular manifestations in rare cases.
The production of recombinant ACADS has advanced diagnostic methods and therapeutic research. It supports enzyme replacement therapy (ERT) studies and high-throughput screening for pharmacological chaperones to stabilize misfolded variants. Structural studies using recombinant ACADS (via X-ray crystallography and cryo-EM) have revealed key catalytic residues and mechanisms of disease-causing mutations. Challenges remain in optimizing recombinant protein stability and mimicking native post-translational modifications. Current applications extend to developing cellular models for metabolic disease research and evaluating gene therapy vectors targeting mitochondrial enzymes.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×