纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | P53 |
Uniprot No | P04637 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-393aa |
氨基酸序列 | MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDI EQWFTEDPGP DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVP SQKTYQGSYGFRLGFLHSGTAK SVTCTYSPALNKMFCQLAKTCPVQLW VDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE RCSDSDGLAPPQHL IRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS SC MGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKK GEPHHELP PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEM FRELNEALELKDAQAGKEPG GSRAHSSHLKSKKGQSTSRHKKLMFKTE GPDSD |
预测分子量 | 79 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4篇关于p53重组蛋白的典型文献示例(内容基于领域内经典或近期研究整理,具体细节需结合实际文献调整):
---
1. **文献名称**:*"Structural basis of p53 inactivation by SV40 large T antigen"*
**作者**:Boehme KA, et al.
**摘要**:通过X射线晶体学解析了重组p53蛋白与SV40病毒大T抗原复合物的结构,揭示了T抗原如何结合p53并抑制其抑癌功能,为p53的构效关系研究提供依据。
2. **文献名称**:*"High-throughput screening of p53 reactivators using recombinant mutant p53 proteins"*
**作者**:Bykov VJ, et al.
**摘要**:利用重组突变型p53蛋白建立高通量药物筛选平台,鉴定出可恢复p53野生型构象的小分子化合物(如PRIMA-1),推动靶向p53的癌症治疗策略开发。
3. **文献名称**:*"Recombinant p53 phosphorylation regulates its transcriptional activity and apoptosis induction"*
**作者**:Shi D, et al.
**摘要**:通过体外磷酸化修饰重组p53蛋白,证明特定丝氨酸位点的磷酸化调控其与DNA结合的能力,进而影响下游基因转录和细胞凋亡功能。
4. **文献名称**:*"Delivery of recombinant p53 protein via nanoparticles enhances tumor suppression in vivo"*
**作者**:Wang Y, et al.
**摘要**:开发基于纳米颗粒的重组p53蛋白递送系统,证明其能有效穿透肿瘤细胞并恢复p53通路活性,显著抑制小鼠模型中肿瘤生长。
---
**说明**:以上文献为示例性质,实际引用时需根据具体研究方向选择权威期刊论文(如*Nature、Cancer Cell、Molecular Cell*等),并核对作者、年份及摘要细节。建议通过PubMed或Web of Science以关键词“recombinant p53 protein”“p53 structure/function”等检索最新研究。
The p53 protein, encoded by the TP53 gene, is a critical tumor suppressor regulating cell cycle arrest, DNA repair, apoptosis, and genomic stability. Often termed the "guardian of the genome," p53 activates downstream genes in response to cellular stress, preventing malignant transformation. Mutations in TP53 occur in >50% of human cancers, making p53 a central focus in oncology research. Wild-type p53 functions as a tetrameric transcription factor, but mutant variants lose tumor-suppressive activity and may gain oncogenic properties.
Recombinant p53 proteins are engineered in vitro using expression systems (e.g., E. coli, yeast, mammalian cells) to study its structure-function relationships, interactions, and therapeutic potential. The development of recombinant technology enabled large-scale production of pure, bioactive p53 for biochemical assays, structural studies (e.g., X-ray crystallography), and drug screening platforms. Researchers utilize these proteins to investigate p53's conformational changes, post-translational modifications (e.g., phosphorylation, acetylation), and binding partners (MDM2. p63/p73).
Therapeutic applications include restoring p53 function in cancers through small molecules that reactivate mutant p53 or inhibit its degradation. Recombinant p53 also aids in gene therapy strategies, where functional TP53 is delivered to cancer cells. Challenges persist in maintaining the protein's native conformation and stability due to its intrinsically disordered regions and complex regulation. Recent advances in protein engineering, cryo-EM, and AI-based structure prediction continue to refine recombinant p53 tools, deepening insights into cancer mechanisms and targeted therapies.
×