纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PLB |
Uniprot No | P26678 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-52aa |
氨基酸序列 | MEKVQYLTRSAIRRASTIEMPQQARQKLQNLFINFCLILICLLLICIIVMLL |
预测分子量 | 33.1kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于PLB(以磷酸化酶b激酶或磷蛋白为例)重组蛋白的参考文献示例,供参考。请注意,部分文献信息为示例性质,建议通过学术数据库进一步验证和检索:
---
1. **《重组人磷蛋白PLB在大肠杆菌中的高效表达与纯化》**
- 作者:张伟,李明,王芳
- 摘要:研究通过优化大肠杆菌表达系统,成功表达可溶性重组人PLB蛋白,并采用镍柱亲和层析和分子筛纯化,获得高纯度蛋白,为PLB的体外功能研究提供了材料基础。
2. **《重组PLB蛋白对心肌细胞SERCA2a活性的调控机制》**
- 作者:Chen X, Liu Y, Wang T
- 摘要:通过体外实验证实,重组PLB蛋白以单体形式抑制SERCA2a的钙泵活性,而磷酸化后该抑制作用解除,揭示了PLB在心肌收缩中的关键调节作用。
3. **《基于杆状病毒系统的PLB重组蛋白结构解析》**
- 作者:Smith J, Brown K, Lee S
- 摘要:利用昆虫细胞-杆状病毒系统表达PLB重组蛋白,通过冷冻电镜技术解析其五聚体结构,阐明了其与SERCA2a相互作用的分子基础。
4. **《重组PLB基因治疗在心力衰竭模型中的应用》**
- 作者:Zhao L, et al.
- 摘要:通过腺相关病毒(AAV)递送重组PLB基因至心力衰竭模型,显著改善心肌细胞钙循环功能,为靶向PLB的基因治疗提供了实验依据。
---
**备注**:以上文献为基于PLB相关研究的典型方向(如钙调控、结构解析、基因治疗)构建的示例,实际文献需以具体研究方向为关键词(如“phospholamban recombinant”“PLB expression”)在PubMed、CNKI等平台检索获取。
**Background of PLB Recombinant Protein**
Phospholamban (PLB), a critical regulatory protein in cardiac and skeletal muscle cells, plays a pivotal role in calcium homeostasis. It is a small, transmembrane protein primarily localized in the sarcoplasmic reticulum (SR), where it modulates the activity of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump. By reversibly inhibiting SERCA, PLB controls the rate of calcium reuptake into the SR, thereby influencing muscle relaxation and contraction cycles. Dysregulation of PLB is linked to cardiomyopathies, heart failure, and arrhythmias, highlighting its importance in cardiovascular health.
Structurally, PLB exists in two forms: a monomeric state that actively inhibits SERCA and a pentameric state that acts as a storage form. Post-translational modifications, such as phosphorylation by protein kinase A or Ca²⁺/calmodulin-dependent kinase II, relieve its inhibitory effect on SERCA, enhancing calcium uptake and contractility. This dynamic regulation makes PLB a key therapeutic target for heart diseases.
Recombinant PLB proteins are produced using expression systems like *E. coli* or mammalian cells, enabling precise study of its biochemical properties, interaction mechanisms, and mutational impacts. Engineered variants (e.g., phosphorylation-mimetic mutants) help dissect its regulatory roles. Additionally, recombinant PLB is utilized in drug discovery to screen compounds aiming to modulate SERCA activity or correct pathological PLB-SERCA interactions.
In research, PLB recombinant proteins aid in structural studies (e.g., NMR, X-ray crystallography) and the development of gene therapies targeting PLB-related cardiac disorders. Their applications extend to diagnostic tools for detecting autoantibodies in heart failure patients. Overall, PLB recombinant proteins are indispensable for advancing both basic science and clinical innovations in cardiovascular medicine.
×