首页 / 产品 / 蛋白 / 活性蛋白

Recombinant Human AA protein

  • 中文名: 花生四烯酸(AA)牛血清白蛋白偶联物
  • 别    名: AA;Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
货号: PA2000-384DB
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点AA
Uniprot NoP67775
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间1-309aa
氨基酸序列MDEKVFTKELDQWIEQLNECKQLSESQVKSLCEKAKEILTKESNVQEVRCPVTVCGDVHGQFHDLMELFRIGGKSPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRERITILRGNHESRQITQVYGFYDECLRKYGNANVWKYFTDLFDYLPLTALVDGQIFCLHGGLSPSIDTLDHIRALDRLQEVPHEGPMCDLLWSDPDDRGGWGISPRGAGYTFGQDISETFNHANGLTLVSRAHQLVMEGYNWCHDRNVVTIFSAPNYCYRCGNQAAIMELDDTLKYSFLQFDPAPRRGEPHVTRRTPDYFL
预测分子量35,5 kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是关于重组蛋白制备与应用的3篇代表性文献摘要:

1. 《Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes》

作者:Studier FW, et al. (1990)

摘要:提出基于T7噬菌体RNA聚合酶的高效重组蛋白表达系统,通过优化启动子与宿主菌的调控机制,显著提升大肠杆菌中外源蛋白表达效率。

2. 《Refolding of recombinant proteins》

作者:Clark EDB. (1998)

摘要:系统分析重组蛋白包涵体复性技术,探讨不同去污剂、氧化还原缓冲体系对蛋白正确折叠的影响,建立可规模化的体外复性工艺。

3. 《Comparison of Escherichia coli expression systems》

作者:Mergulhão FJ, et al. (2005)

摘要:对比分析不同大肠杆菌表达系统(包括BL21、Origami等菌株)在重组蛋白产量、可溶性表达及翻译后修饰方面的性能差异。

4. 《Expression in Escherichia coli of chemically synthesized genes for human insulin》

作者:Goeddel DV, et al. (1979)

摘要:报道首个通过大肠杆菌表达系统生产重组人胰岛素的成功案例,建立人工合成基因与微生物表达的技术路线,奠定生物工程药物产业化基础。

注:以上文献均聚焦重组蛋白制备关键技术,涵盖表达系统开发、纯化复性工艺及产业化应用等核心环节,反映该领域重要技术突破历程。

背景信息

**Background of Recombinant Proteins**

Recombinant proteins are genetically engineered molecules produced by introducing specific DNA sequences into host organisms, enabling the synthesis of proteins with desired functions. This technology emerged in the 1970s, following breakthroughs in molecular cloning and gene expression systems. By leveraging recombinant DNA techniques, scientists can modify genes to produce proteins that are otherwise difficult to isolate from natural sources, such as human insulin, growth hormones, or monoclonal antibodies.

The production process typically involves inserting a target gene into vectors (e.g., plasmids), which are then introduced into host cells like *E. coli*, yeast, or mammalian cell lines. These cells act as biological factories, translating the gene into protein. Advances in expression systems, purification methods (e.g., affinity chromatography), and quality control have enhanced yield, purity, and scalability. Recombinant proteins are pivotal in therapeutics (e.g., vaccines, enzyme replacements), research tools (e.g., CRISPR-associated proteins), and industrial applications (e.g., biofuel enzymes).

Challenges remain, including achieving proper post-translational modifications (e.g., glycosylation) in prokaryotic systems and minimizing immunogenicity in therapeutic proteins. Innovations like cell-free synthesis, AI-driven protein design, and CRISPR-based editing are addressing these limitations. Recombinant protein technology continues to revolutionize medicine and biotechnology, offering tailored solutions for complex diseases and sustainable industrial processes. Its evolution underscores the synergy between genetic engineering and biomanufacturing, driving scientific and commercial advancements globally.

客户数据及评论

折叠内容

大包装询价

×