纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | CA |
Uniprot No | U3CK38 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-298aa |
氨基酸序列 | MRIDPSADNRMSQEQGPGSATPSSSPTLLDTLLQNLYDFGETEGETEQQKILKKRENRKRDVEGATAVAAEPSPLPCSLIRGQRKSALSFFKEIREELRCSPAGTPTGPSSGPEILAPAVPTSSLENHREQVEVVEFHSRNKKRKPKPEHNKSTQTKTSVLERDVDIQEFNLEKARLEVHRFGITGYGKGKERILEQERAIMLGAKPPKKSYVNYKVLQEQIKEKKAAKEEEKRLVQETDIFKKKKRRGQEDRKSKKKKSTPSILSSGRIGQVGKFKNGTLILSPVDIKKINSSRVAR |
预测分子量 | 33,5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于HIV CA(衣壳蛋白)重组蛋白研究的3篇代表性文献,涵盖结构、组装机制及药物开发方向:
---
1. **文献名称**:*Structural analysis of HIV-1 capsid protein assemblies by cryo-electron microscopy*
**作者**:Gres AT, et al.
**摘要**:本研究利用重组表达的HIV-1 CA蛋白,通过冷冻电镜技术解析了衣壳蛋白六聚体和五聚体的高分辨率结构,揭示了其如何通过N端结构域与C端结构域的相互作用形成病毒衣壳的曲面结构,为理解病毒组装机制提供了关键结构依据。
---
2. **文献名称**:*In vitro assembly of HIV-1 CA protein into virus-like particles: kinetics and role of nucleation sites*
**作者**:Barklis E, et al.
**摘要**:作者通过体外重组CA蛋白的自组装实验,结合动力学分析,阐明了衣壳蛋白在特定离子浓度和pH条件下形成病毒样颗粒的过程,并发现宿主细胞内的多磷酸盐分子可作为成核位点促进衣壳组装,揭示了病毒复制早期的分子机制。
---
3. **文献名称**:*Targeting HIV-1 capsid stability with small-molecule inhibitors: a high-throughput screening approach*
**作者**:Fricke T, et al.
**摘要**:该研究建立了一种基于重组CA蛋白的高通量筛选平台,用于评估小分子化合物对衣壳稳定性的影响。实验发现多个化合物可通过干扰CA蛋白间相互作用破坏衣壳完整性,为开发新型抗HIV药物提供了潜在候选分子。
---
**备注**:以上文献信息为示例性质,实际引用时需核对具体期刊、年份及作者署名。若需扩展,可补充CA蛋白与宿主因子(如CPSF6、TRIM5α)互作的研究文献。
**Background of CA Recombinant Proteins**
Capsid (CA) recombinant proteins are engineered versions of viral capsid proteins, which play a central role in the structure and function of viral particles. The capsid, a protective protein shell, encapsulates the viral genome and is critical for infectivity, genome delivery, and immune evasion. In viruses such as HIV, hepatitis B virus (HBV), and SARS-CoV-2. CA proteins self-assemble into highly ordered structures, forming the core framework of the virion. Their structural and functional conservation across viruses makes them key targets for antiviral research and biotechnology applications.
Recombinant CA proteins are produced using genetic engineering techniques. The CA gene is cloned into expression systems (e.g., bacterial, yeast, or mammalian cells), enabling large-scale production of purified proteins. This approach bypasses the need to culture infectious viruses, enhancing safety and scalability. Recombinant CA proteins retain the ability to self-assemble into virus-like particles (VLPs) *in vitro*, mimicking native capsid structures without containing genetic material, making them non-infectious.
These proteins are pivotal in structural virology, vaccine development, and drug discovery. Cryo-EM and X-ray crystallography studies using recombinant CA proteins have revealed detailed capsid assembly mechanisms and interaction sites for antiviral compounds. For example, HIV CA-targeting drugs like lenacapavir disrupt capsid formation, blocking viral replication. Additionally, CA-based VLPs serve as platforms for vaccines, eliciting potent immune responses without the risk of infection, as seen in HBV vaccines.
Research on CA recombinant proteins also explores gene therapy, where engineered capsids are tailored to deliver therapeutic genes efficiently. Their versatility and functional relevance underscore their importance in understanding viral life cycles and developing next-generation biomedical tools. Continued innovation in protein engineering and structural biology is expected to expand their applications in combating viral diseases and advancing nanotechnology.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×