纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | ABA |
Uniprot No | P63151 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-447aa |
氨基酸序列 | MAGAGGGNDIQWCFSQVKGAVDDDVAEADIISTVEFNHSGELLATGDKGGRVVIFQQEQENKIQSHSRGEYNVYSTFQSHEPEFDYLKSLEIEEKINKIRWLPQKNAAQFLLSTNDKTIKLWKISERDKRPEGYNLKEEDGRYRDPTTVTTLRVPVFRPMDLMVEASPRRIFANAHTYHINSISINSDYETYLSADDLRINLWHLEITDRSFNIVDIKPANMEELTEVITAAEFHPNSCNTFVYSSSKGTIRLCDMRASALCDRHSKLFEEPEDPSNRSFFSEIISSISDVKFSHSGRYMMTRDYLSVKIWDLNMENRPVETYQVHEYLRSKLCSLYENDCIFDKFECCWNGSDSVVMTGSYNNFFRMFDRNTKRDITLEASRENNKPRTVLKPRKVCASGKRKKDEISVDSLDFNKKILHTAWHPKENIIAVATTNNLYIFQDKVN |
预测分子量 | 51,6 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于ABA重组蛋白的3篇参考文献及其摘要概括:
1. **文献名称**:*"Engineering Abscisic Acid Biosynthesis in Plants via Recombinant Protein Expression"*
**作者**:Santiago J. et al.
**摘要**:研究通过重组DNA技术在大肠杆菌和植物细胞中表达ABA合成关键酶(如NCED),验证重组蛋白活性,并探讨其在调控植物抗旱性中的应用。
2. **文献名称**:*"Structural and Functional Analysis of a Recombinant ABA Receptor PYL1 from Arabidopsis"*
**作者**:Park S.Y. et al.
**摘要**:利用重组技术表达拟南芥ABA受体PYL1蛋白,解析其晶体结构,揭示ABA结合后诱导的构象变化及与下游磷酸酶的互作机制。
3. **文献名称**:*"Optimization of Recombinant ABA-Binding Protein Production in Yeast for Stress Signaling Studies"*
**作者**:Zhang L. et al.
**摘要**:通过优化酵母表达系统提高重组ABA结合蛋白(如ABAR/CHLH)的产量,并验证其体外结合ABA的能力及在气孔关闭中的功能。
4. **文献名称**:*"Application of Recombinant ABA-Sensing Proteins in Crop Drought Tolerance Engineering"*
**作者**:Chen H. et al.
**摘要**:将重组ABA受体蛋白(如PYR/PYL家族)导入作物中,通过转基因植株验证其增强ABA信号传导及提升干旱胁迫耐受性的效果。
(注:以上文献为示例,实际引用需以具体论文为准。)
**Background of ABA Recombinant Proteins**
Abscisic acid (ABA), a critical phytohormone, regulates plant growth and stress responses, including drought tolerance, seed dormancy, and stomatal closure. Understanding ABA signaling mechanisms has been a focal point in plant biology, particularly for improving crop resilience. A breakthrough emerged with the discovery of ABA receptors, such as the PYR/PYL/RCAR family, which interact with downstream protein phosphatases to mediate ABA-dependent gene expression.
Recombinant protein technology has played a pivotal role in dissecting ABA signaling. By expressing and purifying ABA-related proteins (e.g., receptors, kinases, or transcription factors) in heterologous systems like *E. coli* or yeast, researchers gain insights into their structural and functional properties. For instance, structural studies using recombinant PYL proteins revealed how ABA binding induces conformational changes, enabling receptor activation and interaction with partner proteins. These findings clarified the molecular basis of ABA perception and signal transduction.
Additionally, recombinant ABA proteins facilitate biotechnological applications. Engineered ABA-sensitive promoters or synthetic signaling components, derived from recombinant studies, are used to design stress-responsive transgenic crops. Beyond agriculture, ABA recombinant proteins contribute to synthetic biology for stress-tolerant bioengineered systems.
Despite progress, challenges remain, such as optimizing protein stability and activity in non-native environments. Ongoing research integrates omics and computational tools to refine recombinant designs, aiming to harness ABA pathways for sustainable agriculture and climate resilience. Overall, ABA recombinant proteins bridge fundamental discoveries with practical innovations in plant science.
(Word count: 246)
×