首页 / 产品 / 蛋白 / 其他蛋白

Recombinant Human SMN protein

  • 中文名: 运动神经元生存蛋白1(SMN)重组蛋白
  • 别    名: SMN;SMN;SMNT;SMN2;Survival motor neuron protein
货号: PA2000-636
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点SMN
Uniprot NoQ16637
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间1-282aa
氨基酸序列MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASF KHALKNGDICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSA IWSEDGCIYPATIASIDFKRETCVVVYTGYGNREEQNLSDLLSPICEVAN NIEQNAQENENESQVSTDESENSRSPGNKSDNIKPKSAPWNSFLPPPPPM PGPRLGPGKPGLKFNGPPPPPPPPPPHLLSCWLPPFPSGPPIIPPPPPIC PDSLDDADALGSMLISWYMSGYHTGYYMEMLA
预测分子量57 kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是关于SMN重组蛋白的模拟参考文献示例(部分信息为虚构,仅作格式参考):

1. **文献名称**:Recombinant SMN protein enhances survival in a mouse model of spinal muscular atrophy

**作者**:Smith J, et al.

**摘要**:研究通过重组SMN蛋白在小鼠SMA模型中系统性递送,证明其能有效穿透血脑屏障并延长生存期,为蛋白替代疗法提供实验依据。

2. **文献名称**:Production of functional human SMN protein in E. coli: Implications for SMA therapeutics

**作者**:Li X, et al.

**摘要**:报道了一种大肠杆菌表达系统高效生产具有生物活性的重组人SMN蛋白,并验证其在体外恢复运动神经元功能的能力。

3. **文献名称**:Structural analysis of recombinant SMN complex reveals oligomerization-dependent mechanism

**作者**:Garcia R, et al.

**摘要**:通过冷冻电镜解析重组SMN蛋白复合物的三维结构,阐明其寡聚化状态对snRNP组装功能的调控机制。

4. **文献名称**:Intranasal delivery of recombinant SMN improves motor function in neonatal SMA pigs

**作者**:Chen L, et al.

**摘要**:开发鼻黏膜递送重组SMN蛋白的新方法,在大型动物模型(猪)中观察到运动神经元保护和运动能力改善效果。

注:以上文献信息为模拟生成,实际引用请查询PubMed、Web of Science等数据库获取真实文献。

背景信息

**Background of Recombinant SMN Protein**

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disorder primarily caused by mutations or deletions in the *SMN1* gene, which encodes the survival motor neuron (SMN) protein. SMN is essential for the assembly of small nuclear ribonucleoproteins (snRNPs), critical components of the spliceosome machinery responsible for pre-mRNA splicing. Reduced SMN levels lead to impaired RNA processing, motor neuron degeneration, and progressive muscle weakness.

Humans possess a paralog gene, *SMN2*, which produces insufficient functional SMN protein due to a splicing defect in exon 7. While *SMN2* generates mostly truncated SMNΔ7 protein (∼10% functional protein), its copy number correlates with disease severity. This genetic redundancy underpins therapeutic strategies aimed at modulating *SMN2* splicing or supplementing functional SMN protein.

Recombinant SMN protein therapy emerged as a promising approach to directly restore SMN levels, bypassing genetic limitations. Early challenges included protein stability, delivery across the blood-brain barrier, and intracellular targeting. Advances in protein engineering, such as cell-penetrating peptides or fusion tags, have improved bioavailability and neuronal uptake.

Notably, FDA-approved SMA therapies like antisense oligonucleotides (e.g., nusinersen) and gene therapy (e.g., onasemnogene abeparvovec) focus on enhancing SMN production from *SMN2* or delivering functional *SMN1* genes. Recombinant SMN protein could complement these by providing immediate, dose-controlled supplementation, particularly for patients with low *SMN2* copies or resistance to existing treatments.

Preclinical studies in SMA mouse models demonstrated that recombinant SMN protein extends survival and improves motor function. However, challenges remain in optimizing pharmacokinetics, minimizing immunogenicity, and ensuring sustained efficacy. Ongoing research explores hybrid strategies, combining recombinant proteins with gene therapies or small molecules, to maximize therapeutic outcomes.

In summary, recombinant SMN protein represents a direct, versatile therapeutic avenue for SMA, addressing the root cause of SMN deficiency while offering potential synergies with established modalities.

相关服务

折叠内容

重组蛋白表达纯化服务

在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。

展开

技术平台

艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。

展开

蛋白工艺开发

艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。

展开

客户数据及评论

折叠内容

大包装询价

×