纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TT |
Uniprot No | Q8NDW8 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-1320aa |
氨基酸序列 | MSSNDSSLMAGIIYYSQEKYFHHVQQAAAVGLEKFSNDPVLKFFKAYGVLKEEHIQDAISDLESIRHHPDVSLCSTMALIYAHKRCEIIDREAIQELEYSLKEIRKTVSGTALYYAGLFLWLIGRHDKAKEYIDRMLKISRGFREAYVLRGWVDLTSDKPHTAKKAIEYLEQGIQDTKDVLGLMGKAMYFMMQQNYSEALEVVNQITVTSGSFLPALVLKMQLFLARQDWEQTVEMGHRILEKDESNIDACQILTVHELAREGNMTTVSSLKTQKATNHVRNLIKALETREPENPSLHLKKIIVVSRLCGSHQVILGLVCSFIERTFMATPSYVHVATELGYLFILKNQVKEALLWYSEAMKLDKDGMAGLTGIILCHILEGHLEEAEYRLEFLKEVQKSLGKSEVLIFLQALLMSRKHKGEEETTALLKEAVELHFSSMQGIPLGSEYFEKLDPYFLVCIAKEYLLFCPKQPRLPGQIVSPLLKQVAVILNPVVKAAPALIDPLYLMAQVRYYSELENAQSILQRCLELDPASVDAHLLMCQIYLAQGNFGMCFHCLELGVSHNFQVRDHPLYHLIKARALNKAGDYPEAIKTLKMVIKLPALKKEEGRKFLRPSVQPSQRASILLELVEALRLNGELHEATKVMQDTINEFGGTPEENRITIANVDLVLSKGNVDVALNMLRNILPKQSCYMEAREKMANIYLQTLRDRRLYIRCYRELCEHLPGPHTSLLLGDALMSILEPEKALEVYDEAYRQNPHDASLASRIGHAYVKAHQYTEAIEYYEAAQKINGQDFLCCDLGKLLLKLKKVNKAEKVLKQALEHDIVQDIPSMMNDVKCLLLLAKVYKSHKKEAVIETLNKALDLQSRILKRVPLEQPEMIPSQKQLAASICIQFAEHYLAEKEYDKAVQSYKDVFSYLPTDNKVMLELAQLYLLQGHLDLCEQHCAILLQTEQNHETASVLMADLMFRKQKHEAAINLYHQVLEKAPDNFLVLHKLIDLLRRSGKLEDIPAFFELAKKVSSRVPLEPGFNYCRGIYCWHIGQPNEALKFLNKARKDSTWGQSAIYHMVQICLNPDNEVVGGEAFENQGAESNYMEKKELEQQGVSTAEKLLREFYPHSDSSQTQLRLLQGLCRLATREKANMEAALGSFIQIAQAEKDSVPALLALAQAYVFLKQIPKARMQLKRLAKTPWVLSEAEDLEKSWLLLADIYCQGSKFDLALELLRRCVQYNKSCYKAYEYMGFIMEKEQSYKDAVTNYKLAWKYSHHANPAIGFKLAFNYLKDKKFVEAIEICNDVLREHPDYPKIREEILEKARRSLRP |
预测分子量 | 150,9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TT(破伤风类毒素)重组蛋白的3篇参考文献示例(注:文献信息为示例性概括,具体内容请以实际发表文献为准):
1. **《Design of a glycoconjugate vaccine against Haemophilus influenzae type B through recombinant protein conjugation》**
- **作者**: P. Costantino et al.
- **摘要**: 研究利用重组TT蛋白作为载体,与B型流感嗜血杆菌多糖共价结合,开发新型结合疫苗,证明其在小鼠模型中显著增强多糖抗原的免疫原性。
2. **《High-yield expression and purification of recombinant tetanus toxin fragment C in Escherichia coli》**
- **作者**: K. D. Mairhofer et al.
- **摘要**: 报道了一种高效表达TT毒素片段C(TTC)的重组大肠杆菌系统,通过优化培养条件和纯化工艺,实现了高纯度蛋白的大规模生产,为疫苗开发提供基础。
3. **《Structural insights into tetanus toxin–ganglioside interactions using recombinant protein mutants》**
- **作者**: J. Masuyer et al.
- **摘要**: 通过重组技术构建TT毒素突变体,结合X射线晶体学分析,揭示了其与神经节苷脂受体结合的关键结构域,为降低神经毒性并保留免疫原性的疫苗设计提供依据。
如需具体文献,建议通过PubMed或Google Scholar检索关键词“recombinant tetanus toxoid protein”或结合研究方向(如疫苗开发、蛋白结构)进一步筛选。
**Background of TT Recombinant Protein**
The TT (tetanus toxoid) recombinant protein is derived from the detoxified form of the tetanus toxin, a neurotoxin produced by *Clostridium tetani*. Historically, inactivated tetanus toxoid has been widely used as a vaccine antigen to prevent tetanus, a life-threatening bacterial infection. With advancements in genetic engineering, recombinant DNA technology has enabled the production of TT-based fusion proteins or carrier platforms for vaccine development and therapeutic applications.
The recombinant TT protein retains key immunogenic epitopes of the native toxoid but is produced through heterologous expression systems, such as *E. coli* or mammalian cell cultures. This approach ensures scalability, consistency, and reduced reliance on traditional toxin purification methods. The TT protein’s strong immunogenicity and well-established safety profile make it an ideal carrier for conjugate vaccines, where polysaccharide or peptide antigens are chemically linked to TT to enhance immune responses. Examples include experimental vaccines targeting pathogens like *Streptococcus pneumoniae* or HIV.
Additionally, TT recombinant proteins are utilized in research as immunological tools. For instance, TT-specific T-cell responses serve as benchmarks in immunomonitoring studies. The protein’s ability to activate T-helper cells also supports its use in epitope mapping and adjuvant development. Recent studies explore TT as a vector for therapeutic vaccines, such as cancer immunotherapy, where tumor-associated antigens are fused with TT to stimulate targeted anti-tumor immunity.
Advantages of recombinant TT include improved purity, customizable modifications (e.g., His-tags for purification), and compatibility with global immunization programs due to pre-existing TT immunity in vaccinated populations. Ongoing research focuses on optimizing expression systems, enhancing stability, and expanding applications in both prophylactic and therapeutic domains.
×