XPO4 (Exportin-4) is a member of the karyopherin-β family of nuclear transport receptors, primarily responsible for mediating the export of specific protein cargoes from the nucleus to the cytoplasm. It plays a critical role in maintaining cellular homeostasis by regulating the nucleocytoplasmic shuttling of transcription factors, tumor suppressors, and RNA-binding proteins. Unlike other exportins such as XPO1/CRM1. XPO4 specifically recognizes cargoes bearing a unique nuclear export signal (NES), including SMAD transcription factors (e.g., SMAD2/3) and SOX family proteins, which are pivotal in TGF-β signaling, embryonic development, and cancer progression.
The recombinant XPO4 protein is engineered using expression systems like *E. coli* or mammalian cells, enabling large-scale production of functional, purified XPO4 for research and therapeutic applications. Its recombinant form retains the ability to bind cargoes and RanGTP, a small GTPase essential for the transport cycle. Structural studies reveal that XPO4 contains characteristic HEAT repeats, facilitating interactions with cargoes and regulatory partners.
Dysregulation of XPO4 is implicated in diseases such as cancer, fibrosis, and neurodegenerative disorders. For instance, aberrant XPO4 activity may disrupt SMAD localization, contributing to TGF-β-driven metastasis or fibrosis. Conversely, XPO4 can act as a tumor suppressor by exporting oncogenic proteins. This dual role underscores its context-dependent functionality.
Recombinant XPO4 is widely used to study nuclear transport mechanisms, screen for small-molecule inhibitors, and develop targeted therapies. Recent efforts focus on modulating XPO4 to restore normal protein trafficking in pathological conditions. However, its therapeutic potential remains under exploration compared to XPO1. highlighting the need for further mechanistic and clinical studies.
以下是关于b3GAT2重组蛋白的3篇代表性文献摘要(注:文献为虚构示例,仅供格式参考):
---
1. **文献名称**:*Recombinant human β3GAT2 expression and enzymatic characterization in glycosaminoglycan synthesis*
**作者**:Smith A, et al.
**摘要**:本研究成功在大肠杆菌中表达并纯化了具有活性的重组人b3GAT2蛋白,证实其催化葡萄糖醛酸转移至糖胺聚糖核心结构的关键功能,为体外合成硫酸乙酰肝素提供了工具酶。
2. **文献名称**:*Structural insights into β3GAT2 substrate specificity via X-ray crystallography*
**作者**:Zhang L, et al.
**摘要**:通过解析重组b3GAT2的晶体结构,揭示了其底物结合口袋的关键氨基酸残基,解释了该酶对不同糖链受体的选择性机制,为设计特异性抑制剂奠定基础。
3. **文献名称**:*Role of recombinant β3GAT2 in modulating cancer cell adhesion*
**作者**:Tanaka K, et al.
**摘要**:利用重组b3GAT2蛋白处理肿瘤细胞,发现其通过调控细胞表面硫酸软骨素的合成,显著抑制癌细胞迁移和侵袭能力,提示其在癌症治疗中的潜在应用价值。
---
**提示**:实际文献需通过PubMed或Google Scholar检索关键词“b3GAT2 recombinant”“β3-glucuronyltransferase 2”获取。可重点关注蛋白表达、酶学机制或疾病关联方向的研究。
**Background of b3GAT2 Recombinant Protein**
β3-glucuronyltransferase 2 (b3GAT2), also known as GlcAT-II, is a member of the glycosyltransferase 43 (GT43) family within the CAZy database. It catalyzes the transfer of glucuronic acid (GlcA) from UDP-GlcA to terminal galactose residues in glycosaminoglycan (GAG) biosynthesis, a critical step in forming proteoglycans like heparan sulfate and chondroitin sulfate. These sulfated polysaccharides play essential roles in cell signaling, extracellular matrix organization, and interactions with growth factors or receptors.
b3GAT2 is particularly associated with the biosynthesis of linker regions in GAG chains, acting early in the pathway to initiate chain elongation. Its activity influences the structural diversity of GAGs, which impacts cellular processes such as neuronal development, immune response, and tissue homeostasis. Dysregulation of b3GAT2 has been linked to pathological conditions, including cancer metastasis (due to altered cell adhesion) and congenital disorders affecting connective tissues.
Recombinant b3GAT2 protein is produced using heterologous expression systems (e.g., *E. coli* or mammalian cells) to study its enzymatic mechanisms, substrate specificity, and interactions. Purified b3GAT2 enables *in vitro* reconstitution of GAG synthesis pathways, aiding drug discovery for GAG-related diseases. Structural studies using recombinant protein have revealed insights into its catalytic domain and binding sites, though challenges remain in resolving full-length structures due to its membrane-associated nature.
Current research focuses on b3GAT2’s role in neurological disorders and its potential as a therapeutic target. Recombinant variants are also explored for biotechnological applications, such as engineering GAG-like polymers for biomaterials. Further studies aim to clarify its regulation and tissue-specific functions, advancing understanding of glycobiology and disease mechanisms.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×