首页 / 产品 / 蛋白 / 活性蛋白

Recombinant Human PFAS protein

  • 中文名: 磷酸核糖甲酰甘氨酸脒合酶(PFAS)重组蛋白
  • 别    名: PFAS;KIAA0361;Phosphoribosylformylglycinamidine synthase
货号: PA2000-1302
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点PFAS
Uniprot NoO15067
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间1064-1302aa
氨基酸序列RVAILREEGSNGDREMADAFHLAGFEVWDVTMQDLCSGAIGLDTFRGVAF VGGFSYADVLGSAKGWAAAVTFHPRAGAELRRFRKRPDTFSLGVCNGCQL LALLGWVGGDPNEDAAEMGPDSQPARPGLLLRHNLSGRYESRWASVRVGP GPALMLRGMEGAVLPVWSAHGEGYVAFSSPELQAQIEARGLAPLHWADDD GNPTEQYPLNPNGSPGGVAGICSCDGRHLAVMPHPERAV
预测分子量45 kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是3-4条假设性参考文献,围绕PFAS与重组蛋白的研究方向整理:

1. **"Recombinant Estrogen Receptor-Based Biosensor for PFAS Endocrine Activity Screening"**

*作者:Zhang et al.*

**摘要**:开发了一种基于重组人雌激素受体(ERα)的体外生物传感器,用于检测PFAS化合物的内分泌干扰效应。实验表明,全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)可显著激活受体,提示其潜在的内分泌干扰风险。

2. **"Engineered Recombinant Laccase for Enhanced PFAS Degradation in Contaminated Water"**

*作者:Wang et al.*

**摘要**:通过定向进化技术改造重组漆酶,提高了其对PFAS的降解效率。该酶在模拟废水环境中可分解短链PFAS,为生物修复提供了新策略。

3. **"A Fluorescent Recombinant Protein Probe for Ultrasensitive PFAS Detection"**

*作者:Chen & Kim*

**摘要**:设计了一种基于重组荧光蛋白的探针,通过竞争结合法实现水中痕量PFAS的快速检测,检测限低至ppt级别,适用于环境实时监测。

4. **"PFAS-Induced Oxidative Stress Mechanism Revealed by Recombinant Antioxidant Enzymes"**

*作者:Rocha et al.*

**摘要**:利用重组超氧化物歧化酶(SOD)和过氧化氢酶(CAT)研究PFAS对氧化应激通路的影响,发现PFOS通过抑制SOD活性导致细胞内活性氧(ROS)累积。

---

**注**:以上文献为示例性内容,实际研究中请通过学术数据库(如PubMed、Web of Science)检索真实发表的论文。

背景信息

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals widely used since the 1940s for their water- and stain-resistant properties. However, their environmental persistence and bioaccumulation potential have raised significant health concerns, including links to cancer, immune suppression, and endocrine disruption. Traditional remediation methods struggle to degrade PFAS due to their strong carbon-fluorine bonds, prompting interest in biological solutions.

Recombinant proteins engineered for PFAS degradation or detection represent a cutting-edge approach. Microbial enzymes, such as peroxidases or dehalogenases, have been identified as potential candidates for breaking down PFAS through targeted genetic modification. By expressing these proteins in heterologous hosts (e.g., E. coli or yeast), researchers aim to enhance catalytic efficiency, stability, and specificity for PFAS structures. Some studies focus on creating protein-based biosensors that bind PFAS with high affinity, enabling sensitive environmental monitoring.

Recent advances include the development of modified laccases and engineered bacterial strains expressing fluoridase-like activity. Computational protein design and directed evolution techniques are being employed to optimize binding pockets or reaction mechanisms for PFAS substrates. Challenges remain in achieving complete defluorination and scaling up these biological systems for practical applications.

This biotechnology-driven strategy aligns with growing demands for sustainable remediation tools, offering potential advantages in selectivity and energy efficiency compared to conventional methods. Ongoing research also investigates protein-PFAS interaction mechanisms to inform safer chemical design principles, creating a dual approach to combat contamination.

客户数据及评论

折叠内容

大包装询价

×