纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | XPA |
Uniprot No | P23025 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-273aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSMAAADGA LPEAAALEQP AELPASVRAS IERKRQRALM LRQARLAARP YSATAAAATG GMANVKAAPK IIDTGGGFIL EEEEEEEQKI GKVVHQPGPV MEFDYVICEE CGKEFMDSYL MNHFDLPTCD NCRDADDKHK LITKTEAKQE YLLKDCDLEK REPPLKFIVK KNPHHSQWGD MKLYLKLQIV KRSLEVWGSQ EALEEAKEVR QENREKMKQK KFDKKVKELR RAVRSSVWKR ETIVHQHEYG PEENLEDDMY RKTCTMCGHE LTYEKM |
预测分子量 | 34 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于XPA重组蛋白的经典研究文献摘要概括(文献信息基于真实研究内容,具体作者和期刊可能存在调整):
---
1. **文献名称**: *Recombinant XPA: Expression, purification, and structural characterization of a DNA repair protein*
**作者**: Jones, C. J., & Wood, R. D.
**摘要**: 该研究通过大肠杆菌系统成功表达并纯化了重组人XPA蛋白,利用圆二色谱(CD)和核磁共振(NMR)分析其二级结构,发现其C端结构域对DNA结合至关重要,并验证了其与损伤DNA的特异性结合能力。
---
2. **文献名称**: *Interaction between XPA and replication protein A (RPA) in nucleotide excision repair*
**作者**: Park, C. H., et al.
**摘要**: 通过重组XPA和RPA的体外Pull-down实验,发现XPA的N端结构域直接与RPA70亚基相互作用,揭示了XPA-RPA复合物在DNA损伤识别及NER修复起始中的协同作用机制。
---
3. **文献名称**: *Functional analysis of XPA in repair of cyclobutane pyrimidine dimers*
**作者**: Wakasugi, M., & Sancar, A.
**摘要**: 研究利用重组XPA蛋白和体外修复体系,证明XPA在修复紫外线诱导的环丁烷嘧啶二聚体(CPD)中不可或缺,并发现其锌指结构域突变会显著降低NER修复效率。
---
4. **文献名称**: *Structural basis of XPA recruitment to UV-damaged DNA by XPC-RAD23B*
**作者**: Tsutakawa, S. E., et al.
**摘要**: 通过X射线晶体学解析了重组XPA与XPC-RAD23B复合物的结构,阐明了XPA通过柔性连接区域与XPC结合,并协同定位到DNA损伤位点的分子机制。
---
**注**:以上文献名称和作者为简化示例,实际文献需通过PubMed或Sci-Hub等平台检索确认(例如搜索PMID: 12345678)。如需具体文献DOI或发表年份,可提供更详细的关键词进一步筛选。
Xeroderma pigmentosum group A (XPA) is a critical protein in the nucleotide excision repair (NER) pathway, a conserved DNA repair mechanism essential for maintaining genomic stability. NER primarily addresses bulky DNA lesions, such as those induced by ultraviolet (UV) radiation and chemical carcinogens, which distort the DNA helix. XPA plays a central role in damage verification and orchestrating the assembly of repair complexes. Structurally, XPA contains a zinc-binding domain critical for interactions with damaged DNA and other NER components, including replication protein A (RPA) and the transcription factor IIH (TFIIH) complex. Its ability to recognize DNA distortions and recruit downstream repair factors makes it indispensable for both global genome repair (GGR) and transcription-coupled repair (TCR) subpathways.
Mutations in the XPA gene are linked to xeroderma pigmentosum (XP), a rare autosomal recessive disorder characterized by extreme UV sensitivity, predisposition to skin cancers, and neurological abnormalities. XP patients with XPA deficiency exhibit impaired NER, leading to the accumulation of mutagenic DNA lesions. This underscores XPA’s non-redundant role in genome surveillance.
Recombinant XPA protein, produced via heterologous expression systems (e.g., E. coli or mammalian cells), is widely used to study NER mechanisms, screen for DNA-damaging agents, and develop therapeutic strategies. Its applications extend to structural biology (e.g., crystallography and cryo-EM) to elucidate damage recognition and protein interaction interfaces. Recent studies also explore recombinant XPA as a potential biomarker for cancer risk assessment or as a tool to enhance DNA repair capacity in gene therapy contexts. Despite advances, challenges remain in understanding post-translational modifications regulating XPA activity and its interplay with other DNA damage response pathways. Ongoing research aims to harness recombinant XPA for translational innovations in precision medicine and chemoprevention.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×