纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | EP4 |
Uniprot No | P43116 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-358aa |
氨基酸序列 | MGNASNDSQSEDCETRQWLPPGESPAISSVMFSAGVLGNLIALALLARRWRGDVGCSAGRRSSLSLFHVLVTELVFTDLLGTCLISPVVLASYARNQTLVALAPESRACTYFAFAMTFFSLATMLMLFAMALERYLSIGHPYFYQRRVSRSGGLAVLPVIYAVSLLFCSLPLLDYGQYVQYCPGTWCFIRHGRTAYLQLYATLLLLLIVSVLACNFSVILNLIRMHRRSRRSRCGPSLGSGRGGPGARRRGERVSMAEETDHLILLAIMTITFAVCSLPFTIFAYMNETSSRKEKWDLQALRFLSINSIIDPWVFAILRPPVLRLMRSVLCCRISLRTQDATQTSCSTQSDASKQADL |
预测分子量 | 39,7 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于EP4重组蛋白的模拟参考文献示例(内容为虚构,仅供格式参考):
1. **《Expression and Purification of Recombinant EP4 Receptor for Functional Studies》**
*作者:Smith J, et al. (2020)*
摘要:本研究描述了人源EP4受体的重组表达及纯化流程,利用昆虫细胞系统成功获得高纯度蛋白,并验证其与前列腺素E2的结合活性,为后续受体功能研究奠定基础。
2. **《Structural Insights into EP4 Receptor Activation Mechanisms》**
*作者:Zhang L, et al. (2019)*
摘要:通过冷冻电镜技术解析EP4重组蛋白与激动剂复合物的三维结构,揭示了其跨膜结构域构象变化及下游信号传导的分子机制。
3. **《EP4 Recombinant Protein as a Therapeutic Target in Inflammatory Diseases》**
*作者:Johnson R, et al. (2021)*
摘要:基于重组EP4蛋白开发的小分子抑制剂筛选平台,发现新型抗炎化合物,并在动物模型中验证其抑制PGE2/EP4信号通路的疗效。
4. **《Development of a High-Throughput Assay Using EP4 Recombinant Protein for Drug Discovery》**
*作者:Wang H, et al. (2018)*
摘要:构建基于表面等离子体共振(SPR)技术的EP4重组蛋白高通量检测系统,成功应用于癌症治疗相关药物的亲和力筛选。
**注意**:以上文献为模拟内容,实际文献需通过PubMed、Web of Science或Google Scholar等学术平台检索。建议使用关键词“EP4 receptor recombinant protein”、“EP4 prostaglandin signaling”等结合研究领域(如炎症、癌症)进行精准查询。
**Background of EP4 Recombinant Protein**
The EP4 receptor, a subtype of the prostaglandin E2 (PGE2) receptor family, belongs to the G protein-coupled receptor (GPCR) superfamily. It is encoded by the *PTGER4* gene and plays a critical role in mediating cellular responses to PGE2. a lipid mediator involved in inflammation, pain perception, and immune regulation. Structurally, EP4 contains seven transmembrane domains and interacts with G proteins (primarily Gαs and Gαi/o) to activate downstream signaling pathways, including cAMP-PKA, PI3K-Akt, and β-arrestin-dependent cascades. These pathways regulate diverse physiological and pathological processes, such as vascular homeostasis, tissue repair, and cancer progression.
EP4 has garnered significant attention due to its dual role in modulating immune responses. While it promotes anti-inflammatory effects in certain contexts (e.g., resolving acute inflammation), it also exhibits pro-tumorigenic properties by enhancing angiogenesis, suppressing antitumor immunity, and facilitating metastasis. This duality makes EP4 a compelling therapeutic target for conditions like rheumatoid arthritis, inflammatory bowel disease, and cancers (e.g., colorectal, breast).
Recombinant EP4 protein is engineered using expression systems (e.g., mammalian, insect, or bacterial cells) to produce purified, bioactive receptor material for research and drug development. It enables *in vitro* studies to dissect EP4 signaling mechanisms, screen receptor-specific agonists/antagonists, and analyze ligand-receptor interactions. Additionally, recombinant EP4 serves as a critical tool in structural biology (e.g., cryo-EM studies) to elucidate receptor activation and guide the design of targeted therapies. Current efforts focus on developing EP4 antagonists to block cancer-associated pathways and agonists for resolving chronic inflammation, highlighting its translational potential in precision medicine.
×