纯度 | >85%SDS-PAGE. |
种属 | Escherichia coli |
靶点 | DsbG |
Uniprot No | P77202 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 18-248aa |
氨基酸序列 | EEL PAPVKAIEKQ GITIIKTFDA PGGMKGYLGK YQDMGVTIYL TPDGKHAISG YMYNEKGENL SNTLIEKEIY APAGREMWQR MEQSHWLLDG KKDAPVIVYV FADPFCPYCK QFWQQARPWV DSGKVQLRTL LVGVIKPESP ATAAAILASK DPAKTWQQYE ASGGKLKLNV PANVSTEQMK VLSDNEKLMD DLGANVTPAI YYMSKENTLQ QAVGLPDQKT LNIIMGNK |
预测分子量 | kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
1. **"Structure and mechanism of the DsbB–DsbA system"**
*作者:J. Messens, J.-F. Collet (2006)*
摘要:综述Dsb蛋白家族功能,指出DsbG作为二硫键异构酶,辅助错误折叠蛋白修复,强调其在周质腔中与DsbC协同维持氧化还原稳态。
2. **"Thioredoxin-like domain of DsbG from Escherichia coli regulates the enzyme's activity"**
*作者:M. Depuydt et al. (2009)*
摘要:通过生化实验揭示DsbG的硫氧还蛋白样结构域调控其异构酶活性,证明其特异性识别部分膜蛋白底物,与DsbC功能互补。
3. **"Crystal structure of the protein disulfide bond isomerase DsbG reveals a redox-sensitive interaction domain"**
*作者:A. Hiniker et al. (2005)*
摘要:解析DsbG晶体结构,发现其底物结合域的氧化还原敏感特性,提出其通过构象变化选择性结合错误折叠蛋白的二硫键。
4. **"Enhancing recombinant protein production in E. coli through DsbG co-expression"**
*作者:B.M. Meehan et al. (2012)*
摘要:实验表明共表达DsbG可提高含复杂二硫键重组蛋白的产量,归因于其纠正错误连接的二硫键并减少包涵体形成。
DsbG is a periplasmic disulfide isomerase and reductase primarily found in *Escherichia coli* and related Gram-negative bacteria. It belongs to the Dsb (disulfide bond) protein family, which plays critical roles in catalyzing and rearranging disulfide bonds during oxidative protein folding in the bacterial periplasm. While DsbA, a primary oxidoreductase, introduces disulfide bonds into nascent proteins, DsbG functions as a proofreading enzyme that corrects non-native or misfolded disulfides, particularly under stress conditions. This functional duality ensures proper folding and stability of secreted or membrane-associated proteins, including virulence factors and enzymes.
Structurally, DsbG shares a thioredoxin-like fold with a conserved CXXC active-site motif, similar to other Dsb proteins. However, its unique hydrophobic substrate-binding groove and redox potential (−149 mV) distinguish it from the more oxidizing DsbA (−122 mV). This redox property allows DsbG to act as a reductase or isomerase, reducing or rearranging incorrect disulfide bonds. Additionally, DsbG contributes to bacterial oxidative stress defense by maintaining periplasmic redox homeostasis, interacting with substrates like misfolded proteins or toxic compounds.
Recombinant DsbG is engineered for biotechnological and pharmaceutical applications. By expressing the *dsbG* gene in heterologous systems (e.g., *E. coli*), researchers produce purified DsbG to study its mechanisms or exploit its chaperone-like activity. Its ability to enhance yields of properly folded disulfide-rich proteins—such as antibodies, cytokines, or industrial enzymes—makes it valuable in protein production pipelines. Furthermore, DsbG homologs or engineered variants are explored for improving recombinant protein solubility and stability, addressing challenges in therapeutic protein manufacturing.
Studies on DsbG also provide insights into bacterial pathogenesis, as its dysfunction compromises virulence factor assembly. Inhibiting DsbG could represent a novel antibacterial strategy, though this remains exploratory. Overall, DsbG exemplifies the intersection of fundamental redox biochemistry and applied biotechnology, bridging microbial physiology with industrial protein engineering needs.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×