纯度 | >85%SDS-PAGE. |
种属 | Escherichia coli |
靶点 | eco |
Uniprot No | B7UFM3 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 21-162aa |
氨基酸序列 | AESVQPLEKIAPYPQAEKGMKRQVIQLTPQEDESTLKVELLIGQTLEVDCNLHRLGGKLESKTLEGWGYDYYVFDKVSSPVSTMMACPDGKKEKKFVTAYLGDAGMLRYNSKLPIVVYTPDNVDVKYRVWKAEEKIDNAVVR |
预测分子量 | 23.5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇与Eco(大肠杆菌)重组蛋白表达相关的经典文献摘要概述:
---
1. **文献名称**:*Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes*
**作者**:Studier, F. W. et al.
**摘要**:提出利用T7 RNA聚合酶系统在大肠杆菌中高效表达重组蛋白的方法,通过调控T7启动子实现目标基因的高选择性表达,显著提高蛋白产量。
---
2. **文献名称**:*Overview of bacterial expression systems for heterologous protein production*
**作者**:Terpe, K.
**摘要**:综述大肠杆菌等表达系统的优缺点,重点讨论启动子(如lac、T7)、载体设计和宿主菌株选择对重组蛋白可溶性及活性的影响。
---
3. **文献名称**:*Recombinant protein expression in Escherichia coli: advances and challenges*
**作者**:Baneyx, F. & Mujacic, M.
**摘要**:分析大肠杆菌表达重组蛋白的常见问题(如包涵体形成),提出优化策略(如分子伴侣共表达、培养条件调控)以提高可溶性和功能性蛋白产量。
---
4. **文献名称**:*Advanced genetic strategies for recombinant protein expression in Escherichia coli*
**作者**:Sørensen, H. P. & Mortensen, K. K.
**摘要**:探讨密码子优化、融合标签(如His-tag)和分泌信号肽等遗传工程手段对改善大肠杆菌中重组蛋白表达效率的作用。
---
这些文献涵盖了大肠杆菌重组蛋白表达的核心技术、优化策略及挑战,适合作为研究基础参考。
**Background of Eco Recombinant Proteins**
Recombinant proteins produced using *Escherichia coli* (E. coli), often termed "Eco recombinant proteins," have been foundational in biotechnology since the 1970s. The advent of genetic engineering enabled scientists to insert foreign genes into E. coli, leveraging its rapid growth, cost-effective cultivation, and well-characterized genetics to produce proteins of interest. This system became a cornerstone for research and industrial applications due to its scalability and simplicity compared to eukaryotic expression systems.
E. coli is particularly suited for producing prokaryotic or simple eukaryotic proteins that do not require post-translational modifications (e.g., glycosylation). Early milestones included the production of human insulin in 1978. which revolutionized diabetes treatment, and later, enzymes, vaccines, and therapeutic proteins like interferons. The development of engineered strains (e.g., BL21. Rosetta) and plasmid vectors (e.g., pET, pGEX) further optimized protein yield and solubility.
However, challenges persist. Complex eukaryotic proteins often misfold or form inclusion bodies in E. coli, necessitating refolding strategies or fusion tags. The lack of native modification systems also limits production of certain biologics, such as monoclonal antibodies. To address these, researchers have developed strategies like codon optimization, co-expression of molecular chaperones, and strain engineering.
Recent advancements in synthetic biology, CRISPR, and AI-driven protein design continue to enhance E. coli's utility. Innovations include engineered strains for non-canonical amino acid incorporation, improved secretion systems, and metabolic pathway tweaks to reduce metabolic burden. Eco recombinant proteins remain vital in drug discovery, industrial enzymology, and basic research, though competition from yeast, insect, and mammalian systems drives ongoing optimization.
In summary, E. coli-based recombinant protein production balances cost, speed, and versatility, maintaining its relevance despite limitations, supported by continuous technological refinements.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×