纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | h1f0-a |
Uniprot No | P22845 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-194aa |
氨基酸序列 | MTENSAPAAKPRRSKASKKSTDHPKYSDMILDAVQAEKSRSGSSRQSIQKYIKNNYTVGENADSQIKLSIKRLVTSGTLKQTKGVGASGSFRLAKADEVKKPAKKPKKEIKKAVSPKKAAKPKKAAKSPAKAKKPKVAEKKVKKAPKKKPAPSPRKAKKTKTVRAKPVWASKAKKAKPSKPKAKASPKKSGRKK |
预测分子量 | 37.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于H1F0-A(组蛋白H1.0亚型)重组蛋白的模拟参考文献示例(需通过学术数据库验证真实性和准确性):
---
1. **文献名称**:*Recombinant H1F0-A Protein Modulates Chromatin Condensation in Vitro*
**作者**:Smith J, Doe R, Lee K
**摘要**:本研究成功表达并纯化了重组H1F0-A蛋白,发现其通过增强核小体间相互作用显著促进染色质压缩,为理解H1组蛋白在基因沉默中的作用提供新机制。
2. **文献名称**:*H1F0-A Recombinant Protein Enhances Cellular Reprogramming Efficiency*
**作者**:Zhang Y, Chen X, Wang L
**摘要**:通过将H1F0-A重组蛋白导入体细胞,实验显示其替代内源性组蛋白H1的能力,提高诱导多能干细胞(iPSC)生成效率,提示其在核重编程中的应用潜力。
3. **文献名称**:*Development of a High-Yield Expression System for H1F0-A in E. coli*
**作者**:Johnson M, Patel S, Kim T
**摘要**:报道了一种优化的大肠杆菌表达系统,可高效生产可溶性H1F0-A重组蛋白,并通过圆二色谱验证其与天然蛋白相似的二级结构,为大规模制备奠定基础。
4. **文献名称**:*H1F0-A Recombinant Protein Binds to Satellite DNA in Cancer Cells*
**作者**:García A, López-Blanco F, González C
**摘要**:利用重组H1F0-A蛋白进行DNA结合实验,发现其优先结合异染色质区域卫星序列,可能参与维持癌基因组稳定性,为靶向癌症表观遗传治疗提供依据。
---
**注意事项**:
- 上述文献为示例性内容,实际引用需通过PubMed、Google Scholar等平台检索真实论文。
- 若研究H1F0-A重组蛋白,建议结合关键词如“H1 histone variant”“recombinant chromatin protein”“gene regulation”进一步筛选文献。
H1F0-A recombinant protein is a genetically engineered variant derived from the H1F0 histone, a member of the H1 linker histone family. Histones are essential chromatin components that compact DNA into nucleosomes, regulating gene expression and genome stability. The H1 family, particularly H1F0 (also called H1.0), is distinct from other somatic H1 subtypes due to its constitutive expression in terminally differentiated cells and stem cells, suggesting roles in maintaining chromatin structure during cellular quiescence or differentiation.
Recombinant H1F0-A is typically produced in bacterial or eukaryotic expression systems, often fused with affinity tags (e.g., His-tag) for purification. Its structure retains conserved domains critical for histone function: a globular domain facilitating DNA binding at nucleosome entry/exit sites, and flexible N- and C-terminal tails involved in chromatin higher-order organization. Unlike native H1F0. the recombinant form may exclude post-translational modifications (e.g., phosphorylation) unless specifically engineered, making it useful for studying structure-function relationships in vitro.
Functionally, H1F0-A participates in chromatin condensation, gene silencing, and nucleosome spacing. Research highlights its involvement in cellular senescence, reprogramming, and cancer, where altered H1F0 expression correlates with tumor suppression or progression. Recombinant H1F0-A serves as a tool to investigate epigenetic regulation, nucleosome dynamics, and histone-chaperone interactions. It is also explored in drug discovery for modulating chromatin accessibility in diseases linked to transcriptional dysregulation. Recent studies utilize it in synthetic nucleosome arrays or chromatin-modeling systems to dissect mechanical and regulatory roles of linker histones.
×