首页 / 产品 / 蛋白 / 细胞因子、趋化因子与生长因子

Recombinant Human EPO protein

  • 中文名: 红细胞生成素(EPO)重组蛋白
  • 别    名: EPO;Erythropoietin
货号: PA1000-1048
Price: ¥询价
数量:
大包装询价

产品详情

纯度>95%SDS-PAGE.
种属Human
靶点EPO
Uniprot NoP01588
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间28-193aa
氨基酸序列APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYA WKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVS GLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLR GKLKLYTGEACRTGDR
预测分子量18 kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是关于重组人促红细胞生成素(EPO)的3篇参考文献及摘要概括:

---

1. **文献名称**: *Erythropoietin: structure, control of production, and function*

**作者**: Jelkmann, W.

**摘要**: 本文综述了EPO的分子结构与生理调控机制,重点阐述肾脏缺氧感应下EPO的合成途径,以及重组EPO(rHuEPO)在治疗肾性贫血和化疗相关贫血中的应用,同时讨论了其可能的副作用(如高血压)及未来研究方向。

2. **文献名称**: *Recombinant human erythropoietin in oncology: current status and future developments*

**作者**: Ludwig, H., et al.

**摘要**: 通过临床试验数据分析,本文证明重组EPO可显著改善癌症患者因化疗导致的贫血症状,提升血红蛋白水平与生活质量,但也指出需平衡血栓风险与治疗获益,并探讨了新型EPO类似物的开发潜力。

3. **文献名称**: *Biosimilar epoetins: an analysis of approaches to manufacturing, efficacy, and safety*

**作者**: Locatelli, F., et al.

**摘要**: 比较了不同生产工艺制备的EPO生物类似药与原研药的理化性质、临床疗效及安全性差异,强调通过严格质量控制可确保生物类似药的等效性,为降低医疗成本提供依据。

---

以上文献涵盖基础机制、临床应用及生产工艺,均发表于权威期刊(如*Physiological Reviews*、*Annals of Oncology*等),如需具体年份或期刊信息可进一步补充。

背景信息

**Background of Recombinant Erythropoietin (EPO)**

Erythropoietin (EPO) is a glycoprotein hormone essential for regulating red blood cell production (erythropoiesis). Naturally produced in the kidneys (and to a lesser extent in the liver), EPO binds to receptors on bone marrow erythroid progenitor cells, promoting their survival, proliferation, and differentiation. Its discovery in the 1950s and subsequent isolation in 1977 paved the way for understanding anemia pathophysiology, particularly in chronic kidney disease (CKD), where impaired EPO synthesis leads to severe anemia.

Before recombinant DNA technology, therapeutic EPO was derived from human urine or plasma, but scarcity and safety concerns (e.g., viral contamination) limited its use. The cloning of the *EPO* gene in 1985 enabled large-scale production of recombinant human EPO (rhEPO) using Chinese hamster ovary (CHO) cells. This breakthrough revolutionized anemia treatment, offering a safer, consistent, and scalable alternative.

rhEPO (e.g., epoetin alfa, beta) mimics natural EPO but exhibits slight structural variations due to glycosylation differences, affecting pharmacokinetics. Later derivatives, like darbepoetin alfa, engineered with additional glycosylation sites, extended half-life, reducing dosing frequency. Clinically, rhEPO became a cornerstone for managing anemia in CKD, chemotherapy-induced anemia, and other chronic conditions.

Beyond medicine, rhEPO’s misuse as a performance-enhancing drug in sports highlighted its ability to boost oxygen-carrying capacity. Despite its benefits, rhEPO therapy requires careful monitoring due to risks like hypertension, thrombosis, and cardiovascular events, especially at high doses.

Today, rhEPO remains a biopharmaceutical success story, exemplifying how recombinant proteins address unmet medical needs while underscoring the importance of balancing efficacy with safety. Ongoing research explores novel EPO analogs and gene therapies to optimize therapeutic outcomes.

客户数据及评论

折叠内容

大包装询价

×