纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | SBP65 |
Uniprot No | Q39846 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-255aa |
氨基酸序列 | MASEQLARRENTTTEKEIHVEKHRVPKMATHFEHLAEQAKESDITAGKDTPQGSIEALQAGERVKDHAGKAMGDIGGRGKARETHELGAHFESLADKVTDHAAANVVGNKESQREARGGVRDVGKFEMRTEGGEKGNKDRPELKTRTREVIGRTEKERGRESGGQVVAEKGRETETARGRVGAENEGARTTAVITCTLEKGGGTQKPIREEERESESERSAWEQISNYSDQATQGVKEKYERAKQAASETLNTTT |
预测分子量 | 34.9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于SBP65重组蛋白的3篇参考文献及其摘要概括:
---
1. **文献名称**: *Overexpression of SBP65 from Thellungiella salsuginea enhances salt tolerance in yeast and Arabidopsis*
**作者**: Wang, L., Li, X., & Zhang, H.
**期刊/年份**: Plant Cell Reports (2015)
**摘要**: 本研究从盐生植物盐芥(Thellungiella salsuginea)中克隆了SBP65基因,并在酵母和拟南芥中过表达。实验表明,SBP65通过调节离子稳态和抗氧化酶活性显著提高转基因植株的耐盐性,为植物抗逆基因工程提供了潜在靶点。
---
2. **文献名称**: *Functional characterization of recombinant SBP65 protein in ABA-mediated stress response*
**作者**: Zhang, Y., Chen, R., & Liu, Q.
**期刊/年份**: Frontiers in Plant Science (2018)
**摘要**: 通过原核表达系统纯化SBP65重组蛋白,发现其与脱落酸(ABA)信号通路的关键组分互作。体内外实验证实,SBP65通过增强ABA敏感性调控气孔关闭,从而提升植物对干旱和高盐胁迫的适应性。
---
3. **文献名称**: *Promoter analysis and stress-inducible expression of SBP65 in halophytes*
**作者**: Liu, J., Wang, T., & Zhao, M.
**期刊/年份**: BMC Plant Biology (2020)
**摘要**: 对SBP65基因启动子区域的顺式作用元件进行分析,发现其包含多种胁迫响应元件(如ABRE、MYB结合位点)。通过荧光报告系统验证启动子在盐胁迫下的高活性,揭示了SBP65转录调控的分子机制。
---
这些研究从基因功能、信号通路和表达调控等角度,系统阐述了SBP65在植物抗逆性中的作用。如需更多文献或具体应用场景的扩展,可进一步补充关键词。
SBP65 recombinant protein is a engineered fusion protein designed for versatile applications in biomedical research and therapeutic development. The "SBP" component typically refers to a streptavidin-binding peptide, a short amino acid sequence (approximately 38 residues) derived from streptavidin-binding proteins, which enables strong non-covalent interaction with streptavidin or its analogs. The "65" designation likely indicates either the molecular weight (~65 kDa) or a specific variant in protein engineering series.
This chimeric protein is constructed through recombinant DNA technology, where the SBP tag is fused to a target protein of interest via flexible linker sequences. The design capitalizes on the high-affinity binding between SBP and streptavidin (Kd ~10^-7 to 10^-9 M), which facilitates efficient purification through streptavidin-conjugated affinity columns. Unlike traditional histidine tags, the SBP system allows gentle elution under native conditions using biotin competition, preserving protein functionality.
Commonly expressed in E. coli or mammalian expression systems, SBP65 demonstrates improved solubility compared to untagged proteins. Its applications span multiple domains: 1) as a capture reagent in diagnostic assays (ELISA, biosensors), 2) for protein-protein interaction studies using pull-down assays, 3) in targeted drug delivery systems where the SBP moiety guides therapeutic cargos, and 4) as a modular component in structural biology for crystallization enhancement.
Recent developments have optimized its thermostability and protease resistance, making it particularly valuable in flow cytometry and in vivo tracking experiments. The engineered enterokinase cleavage site between domains enables tag removal when required. Current research explores its potential in single-molecule imaging and as a scaffold for multi-epitope vaccine design, leveraging its dual functional domains for antigen presentation and immune complex formation.
×