纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | lptD |
Uniprot No | P31554 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 25-784aa |
氨基酸序列 | ADLASQ CMLGVPSYDR PLVQGDTNDL PVTINADHAK GDYPDDAVFT GSVDIMQGNS RLQADEVQLH QKEAPGQPEP VRTVDALGNV HYDDNQVILK GPKGWANLNT KDTNVWEGDY QMVGRQGRGK ADLMKQRGEN RYTILDNGSF TSCLPGSDTW SVVGSEIIHD REEQVAEIWN ARFKVGPVPI FYSPYLQLPV GDKRRSGFLI PNAKYTTTNY FEFYLPYYWN IAPNMDATIT PHYMHRRGNI MWENEFRYLS QAGAGLMELD YLPSDKVYED EHPNDDSSRR WLFYWNHSGV MDQVWRFNVD YTKVSDPSYF NDFDNKYGSS TDGYATQKFS VGYAVQNFNA TVSTKQFQVF SEQNTSSYSA EPQLDVNYYQ NDVGPFDTRI YGQAVHFVNT RDDMPEATRV HLEPTINLPL SNNWGSINTE AKLLATHYQQ TNLDWYNSRN TTKLDESVNR VMPQFKVDGK MVFERDMEML APGYTQTLEP RAQYLYVPYR DQSDIYNYDS SLLQSDYSGL FRDRTYGGLD RIASANQVTT GVTSRIYDDA AVERFNISVG QIYYFTESRT GDDNITWEND DKTGSLVWAG DTYWRISERW GLRGGIQYDT RLDNVATSNS SIEYRRDEDR LVQLNYRYAS PEYIQATLPK YYSTAEQYKN GISQVGAVAS WPIADRWSIV GAYYYDTNAN KQADSMLGVQ YSSCCYAIRV GYERKLNGWD NDKQHAVYDN AIGFNIELRG LSSNYGLGTQ EMLRSNILPY QNTL |
预测分子量 | 89,6 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
1. **Title**: "Structural basis of outer membrane protein insertion by the BAM complex"
**Authors**: Dong, H., et al.
**Summary**: 解析了LptD与BAM复合物协同组装机制,利用重组蛋白技术阐明LptD在细菌外膜整合过程中的构象变化及其对脂多糖转运的关键作用。
2. **Title**: "LptD forms a membrane ring-like structure crucial for LPS transport"
**Authors**: Qiao, S., et al.
**Summary**: 通过重组LptD蛋白的冷冻电镜分析,揭示其形成β-桶状结构并与LptE互作,直接参与脂多糖(LPS)从周质到外膜表面的跨膜运输。
3. **Title**: "Antibiotic targeting of the LPS transporter complex LptD/E"
**Authors**: Srinivas, N., et al.
**Summary**: 研究基于重组LptD/E复合体筛选小分子抑制剂,发现新型抗生素通过破坏LptD-E相互作用阻断LPS运输,为革兰氏阴性菌耐药性问题提供新策略。
4. **Title**: "Reconstitution of the LptD-dependent LPS assembly pathway in vitro"
**Authors**: Chng, S.S., et al.
**Summary**: 利用重组LptD蛋白建立体外重建模型,验证其在LPS插入外膜过程中的ATP依赖性机制,并证明其功能需要伴侣蛋白LptE的辅助。
(注:以上文献标题及作者为虚拟示例,实际文献需通过PubMed或SciHub等平台检索确认。)
**Background of LptD Recombinant Protein**
LptD, a key component of the lipopolysaccharide (LPS) transport machinery in Gram-negative bacteria, plays a critical role in outer membrane biogenesis. It forms a β-barrel protein complex with LptE to mediate the final stages of LPS translocation from the inner membrane to the outer leaflet of the outer membrane. This process is essential for bacterial viability, as the outer membrane acts as a protective barrier against antibiotics and environmental stressors. Due to its conserved function and surface exposure, LptD has emerged as a promising target for novel antimicrobial therapies, particularly against multidrug-resistant pathogens like *Pseudomonas aeruginosa* and *Escherichia coli*.
Recombinant LptD production is challenging due to its structural complexity, hydrophobicity, and dependence on proper folding with LptE. Researchers often employ heterologous expression systems, such as *E. coli*, to produce LptD for functional and structural studies. However, overexpression frequently leads to inclusion body formation, necessitating optimized expression conditions, chaperone co-expression, or refolding strategies. Structural analyses, including X-ray crystallography and cryo-EM, have revealed conformational dynamics during LPS transport, guiding the design of inhibitors that disrupt LptD-LPS or LptD-LptE interactions.
Beyond drug development, LptD recombinant proteins are explored as vaccine candidates. Its surface localization and conservation across Gram-negative species make it a potential target for broad-spectrum vaccines. However, immunogenicity challenges, such as poor antigenicity or immune evasion mechanisms, require further engineering, such as epitope focusing or fusion with carrier proteins.
Overall, LptD recombinant protein research bridges fundamental microbiology and translational applications, offering avenues to combat antibiotic resistance through innovative therapeutic and preventive strategies.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×