The GAL4 protein, originally identified in the yeast *Saccharomyces cerevisiae*, is a sequence-specific transcriptional activator that binds to upstream activating sequences (UAS) to regulate genes involved in galactose metabolism. Its modular structure, featuring a DNA-binding domain (DBD) at the N-terminus and a transactivation domain (TAD) at the C-terminus, has made it a cornerstone tool in molecular and developmental biology. Recombinant GAL4 systems leverage this bipartite design, enabling researchers to artificially control gene expression by separating or recombining these domains with other functional modules.
Developed through genetic engineering, recombinant GAL4 proteins are widely used in heterologous systems. For instance, the GAL4-UAS binary system in *Drosophila* allows tissue-specific gene activation by expressing GAL4 in defined cell types and placing target genes under UAS control. Similarly, modified GAL4 variants (e.g., GAL4-VP16 chimeras) enhance transcriptional activation efficiency in mammalian cells. Recombinant GAL4 has also been adapted for optogenetic control, drug-inducible systems, and synthetic gene circuits.
Its applications span functional genomics, disease modeling, and transgenics. Challenges include minimizing off-target effects and optimizing delivery methods. Ongoing research focuses on engineering hyperactive or conditionally active GAL4 variants, integrating CRISPR compatibility, and improving spatiotemporal precision. As a versatile scaffold, recombinant GAL4 continues to drive advances in synthetic biology and gene regulation studies.
以下是关于Galectin-9(Gal9)重组蛋白的3篇文献摘要概述:
1. **文献名称**: "Recombinant human galectin-9 modulates T-cell responses and reduces autoimmunity in a murine model"
**作者**: Zhu C. et al.
**摘要**: 研究利用重组Gal9蛋白调节T细胞活性,发现其通过结合Tim-3受体抑制Th1/Th17反应,显著缓解小鼠实验性自身免疫性脑脊髓炎(EAE)症状,提示其在自身免疫疾病中的治疗潜力。
2. **文献名称**: "Galectin-9 interacts with PD-1 to regulate HIV latency and T-cell exhaustion"
**作者**: Smith K.N. et al.
**摘要**: 该研究证明重组Gal9蛋白通过结合PD-1受体激活潜伏的HIV病毒库,同时逆转T细胞耗竭,为联合抗逆转录病毒疗法(ART)和免疫治疗提供了新策略。
3. **文献名称**: "Structural and functional characterization of recombinant human galectin-9 in cancer immunotherapy"
**作者**: Wang Y. et al.
**摘要**: 通过结构生物学分析重组Gal9的糖结合域,发现其可通过诱导肿瘤微环境中调节性T细胞(Treg)凋亡增强抗肿瘤免疫,并在黑色素瘤模型中验证了其与PD-1抑制剂的协同效应。
4. **文献名称**: "High-yield production of bioactive recombinant galectin-9 in E. coli using a codon optimization strategy"
**作者**: Tanaka H. et al.
**摘要**: 报道了一种优化大肠杆菌表达系统生产重组Gal9的方法,通过密码子优化和纯化工艺改进获得高纯度蛋白,并验证其体外诱导嗜酸性粒细胞趋化的生物活性。
注:以上内容为文献核心发现的概括性描述,实际文献需通过PubMed/Google Scholar检索标题或作者确认。
Galectin-9 (Gal9), a member of the tandem-repeat-type galectin family, is a β-galactoside-binding lectin first identified in the 1990s. Structurally, it contains two conserved carbohydrate recognition domains (CRDs) connected by a flexible linker peptide, enabling its interaction with diverse glycoconjugates. Gal9 plays multifaceted roles in immune regulation, particularly in modulating T-cell homeostasis. It binds to Tim-3. a surface receptor on Th1 and cytotoxic T cells, triggering apoptosis or exhaustion of these cells, thereby acting as an immune checkpoint molecule. This mechanism links Gal9 to both anti-inflammatory responses and immune evasion in diseases like cancer.
Beyond immunity, Gal9 participates in cell adhesion, autophagy, and microbial defense. Its expression is detected in various tissues, including lymphoid organs, kidneys, and liver. Dysregulation of Gal9 is implicated in pathological conditions: elevated levels correlate with disease progression in HIV, autoimmune disorders (e.g., rheumatoid arthritis), and chronic inflammation, while reduced expression is observed in certain cancers. Paradoxically, some studies highlight its antitumor effects through NK cell activation.
Recombinant Gal9 proteins, typically produced in *E. coli* or mammalian expression systems, retain biological activity and are widely used in research. They serve as tools to study Gal9-mediated signaling, develop Tim-3-targeted therapies, and explore diagnostic biomarkers. Recent investigations also explore engineered Gal9 variants for enhanced stability or targeted delivery. Despite therapeutic potential, challenges remain in balancing its pro- and anti-inflammatory dual roles across different disease contexts. Ongoing research aims to clarify its context-dependent mechanisms and translational applications in immunotherapy and precision medicine.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×