Gel4 recombinant protein is a engineered biomaterial derived from gelatin, a natural polymer obtained through partial hydrolysis of collagen. As a structural protein, collagen provides critical extracellular matrix (ECM) support in tissues, but its immunogenicity and variability in animal-derived forms limit clinical applications. Gel4 addresses these challenges through recombinant DNA technology, where specific collagen-like sequences are designed and expressed in microbial or mammalian host systems like *E. coli* or CHO cells. This process ensures precise control over molecular weight, amino acid composition, and physicochemical properties.
Unlike traditional gelatin, Gel4 lacks animal-derived contaminants and exhibits batch-to-batch consistency, making it suitable for biomedical applications. Its design often incorporates cell-binding motifs (e.g., RGD sequences) to enhance bioactivity while maintaining thermal reversibility—a key feature enabling temperature-dependent sol-gel transitions for injectable therapies. Researchers optimize its expression and purification protocols to achieve high yields of soluble, low-immunogenicity protein.
Gel4 is widely explored in tissue engineering scaffolds, drug delivery systems, and 3D bioprinting due to its tunable mechanical strength and biodegradability. It supports cell adhesion, proliferation, and differentiation, particularly in skin regeneration, cartilage repair, and neural interfaces. Recent studies also investigate its hybrid use with synthetic polymers to balance biocompatibility and structural stability. As regulatory frameworks evolve for recombinant biomaterials, Gel4 represents a promising alternative to conventional gelatin, aligning with the demand for sustainable, customizable, and ethically sourced medical materials. Ongoing research focuses on functionalizing Gel4 with growth factors or nanoparticles to expand its therapeutic potential.
以下是关于PLAC1重组蛋白的3篇模拟参考文献示例(注:部分信息为示例性虚构,建议通过学术数据库核实):
---
1. **文献名称**: *PLAC1 Recombinant Protein Promotes Trophoblast Cell Invasion via ERK Signaling Pathway*
**作者**: Köster R, et al.
**摘要**: 该研究通过在大肠杆菌中表达并纯化PLAC1重组蛋白,探究其对滋养层细胞侵袭能力的影响。实验表明,重组PLAC1通过激活ERK信号通路增强细胞迁移,提示其在胎盘发育中的潜在作用。
---
2. **文献名称**: *Expression and Functional Characterization of PLAC1 in Breast Cancer Cells*
**作者**: Adhikary P, et al.
**摘要**: 研究利用哺乳动物表达系统(HEK293)制备PLAC1重组蛋白,发现其能结合乳腺癌细胞表面受体,促进增殖并抑制凋亡。重组蛋白的体外实验支持PLAC1作为肿瘤治疗靶点的潜力。
---
3. **文献名称**: *Immunotherapeutic Targeting of PLAC1: Production of Recombinant Protein for Antibody Generation*
**作者**: Tweedell RE, et al.
**摘要**: 本文描述了一种高效的真核表达系统(CHO细胞)生产PLAC1重组蛋白的方法,并基于该蛋白成功制备多克隆抗体。抗体验证显示其对胎盘和某些癌细胞中PLAC1的高特异性识别。
---
**备注**:以上文献信息为示例性质,实际研究需通过PubMed、Web of Science等平台以“PLAC1 recombinant protein”为关键词检索。
PLAC1 (Placenta-Specific 1) is a cancer-testis (CT) antigen initially identified for its restricted expression in placental trophoblasts during embryonic development. Its gene, located on the X chromosome, encodes a secreted or membrane-associated protein involved in cell proliferation and differentiation. While physiologically silent in most adult tissues, PLAC1 is aberrantly reactivated in various cancers, including breast, gastric, and ovarian cancers, making it a potential biomarker and therapeutic target.
Recombinant PLAC1 protein is produced using biotechnological systems like Escherichia coli or mammalian cell cultures. Bacterial systems offer cost-effective production but may lack post-translational modifications, whereas eukaryotic systems better mimic native protein structures. This engineered protein enables functional studies to decipher PLAC1's dual role in cancer progression—acting as both an oncogenic driver through EGFR/MAPK pathway activation and a tumor suppressor via p53 regulation in certain contexts.
Research applications include:
1. Developing PLAC1-targeted antibodies for diagnostic assays
2. Investigating its immunogenicity for cancer vaccine development
3. Studying molecular interactions in tumor microenvironment modulation
4. Exploring its role in drug resistance mechanisms
Current challenges involve understanding tissue-specific expression regulation and resolving conflicting data about its pro-/anti-tumor functions. Preclinical studies using PLAC1-directed CAR-T cells and antibody-drug conjugates show promising antitumor activity, highlighting its translational potential. As a CT antigen with limited normal tissue expression, PLAC1 remains attractive for minimizing off-target effects in cancer immunotherapy strategies.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×